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Einstein based his theory on two simple postulates:


1 The principle of Relativity


2 The Constancy of Speed of light in vacuum


From the infinitely small to the infinitely big covering over sixty spatial orders of magnitude Quantum theory is used as much to describe the still largely mysterious vibrations of the microscopic strings that could be the basic constituents to explain the fluctuations of the radiation reaching us from the depths of outer space. 
Serge Haroche
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The Copenhagen Interpretation


The essential controversial features of the Copenhagen Interpretation are 1 The Uncertainty Principle of


Heisenberg 2 The Principle of Complementarity of Bohr


With the passage of time the Copenhagen Interpretation has been identified with a concept known as the


collapse of the wave function so called the reduction of the wave packet as formulated by Von Neumann.


The Heisenberg Principle


Heisenberg Uncertainty principle asserts that the product of position and momentum uncertainty for any


particle will be more than a certain multiple of Planck's constant. Since momentum is the product of mass


and velocity, and since the mass in an experiment is usually that of an electron, this can equivalently be


described by saying that the more precisely the position of a electron is known, the less precisely its


velocity is known.


The Bohr Principle


Bohr Principle of Complementarity arose out of the difficulty physicists were having in their attempts to


determine whether quantum phenomena such as light are particles or waves. But complementarity is not a


solution. Instead, it is an assertion that no solution exists and that physicists know all that can be known


about the question. So it would be well to examine the context from which complementarity arose.


The Deflection of light


Theories of the deflection of light by mass date back at least to the late 18th century. At that time, the


Reverend John Michell, an English clergyman and natural philosopher, reasoned that were the Sun


sufficiently massive, light could not escape from its surface. The pioneer of a mathematical description of


gravity, Sir Isaac Newton, apparently wrote nothing about the effect of mass on the path of light rays,


other than to note at the end of his treatise, "Opticks," published in 1704, that light particles should be


affected by gravity in the same way as is ordinary matter. The first calculation of the deflection of light by


mass was published by the German astronomer Johann Georg von Soldner in 1801. Soldner showed that


rays from a distant star skimming the Sun's surface would be deflected through an angle of about 0.9


seconds of arc, or one quarter of a thousandth of a degree. This angle corresponds to the apparent


diameter of a compact disc viewed from a distance of about 30 kilometers nearly 20 miles. Soldner's


calculations were based on Newton's laws of motion and gravitation, and the assumption that light


behaves like very fast moving particles. As far as we know, neither Soldner nor later astronomers


attempted to verify this prediction, and for good reason: Such an attempt would have been far beyond the


capability of early 19th century astronomical instruments. Over a century later, in the early 20th century,


Einstein developed his theory of general relativity.


Deflection of light passing close to a massive body


According to general relativity, a light ray arriving from the side would be bent inwards such that its


apparent direction of origin, when viewed from the right, would differ by an angle α; the deflection angle


whose size is inversely proportional to the distance d of the closest approach of the ray path to the center


of mass. The curves to each side show the dependence of the deflection angle α on the distance d. The


deflection angle is largest when the light rays pass closest to the mass; α becomes smaller as d becomes


larger. For the Sun, the curves look similar, but the predicted value of α is five thousand times smaller for


rays that skim the surface of the Sun than for rays that skim the surface of this pseudo Sun.


Shifting positions An observer on the Earth can detect the deflection by the Sun of the light from a distant


star by the change with time of year in the star's apparent position in the sky. In the absence of a mass, the


light follows a straight line from the star to the observer. In the presence of the mass, the light ray is bent,


and the light reaches the observer from a slightly different direction. This direction defines a star's


apparent position in the sky. Such shifts in position - although far smaller than imagined - should be


visible to a properly equipped optical observer on the Earth for a star near the Sun's path in the sky.


However, under ordinary conditions sunlight causes the atmosphere to be so bright that it is not feasible to


observe from the Earth with optical telescopes any star whose light passes near the Sun. For the first tests


of Einstein's predictions, astronomers therefore used solar eclipses, occasions on which the moon is


between the Earth and the Sun, and blocks all sunlight from reaching the vicinity of the Earth and


brightening its atmosphere.


Measuring light deflection


1919 saw the first successful attempt to measure the gravitational deflection of light. Two British


expeditions were organized and sponsored by the Royal Astronomical Society and the Royal Society. Each


of the two groups took photographs of a region of the sky centered on the Sun during the May 1919 total


solar eclipse and compared the positions of the photographed stars with those of the same stars


photographed from the same locations in July 1919 when the Sun was far from that region of the sky. The


results showed that light was deflected, and also that this deflection was consistent with general relativity


but not with "Newtonian" physics. The subsequent publicity catapulted Einstein to world fame, and led to


his having the only ticker-tape parade ever held for a scientist on Broadway New York With repetitions of


eclipse measurements over the next half century, astronomers were able to improve on the accuracy of


these first results by only about a factor two, yielding a confirmation of general relativity to within about


ten percent. The breakthrough came in 1967 with the realization that simultaneous measurements with a


set of radio telescopes, "Very Long Baseline Interferometry" could be used to measure light deflection with


much greater accuracy. In addition to providing the means to test general relativity to high accuracy, the


fact that mass deflects light has been a great boon to studies of the universe. Masses acting as gravitational


lenses have now become a standard tool of astronomy. They allow astronomers to infer the masses of


cosmic objects, and the structure and size scale of the universe with some caveats. Through their


magnifying effect, gravitational lenses have also been used to observe the properties of very distant


galaxies and quasars, as well as to search for planets around distant.


Irwin Shapiro is the Timken University Professor at Harvard University and a Senior Scientist of the


Smithsonian Institution. He works at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA.


His research interests involve applications of radio and radar techniques to problems in geophysics,


planetary physics, and astrophysics. He also devised and carried out precision tests of general relativity


within our solar system.
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Michelson-Morley experiment


The experiment used a pencil beam of light that was split in two parts. One travelled directly ahead


through a series of mirrors to increase the length of the travel back to an interferometer. The second was


directed at right angles to the first, through an identical system of mirrors out and then back to the


interferometer. Any sufficient difference, in time taken for one part of the beam as against the other one


would show up as an interference. It was argued that sufficient time difference should have resulted to


produce interference. The value obtained by substituting the speed of light and the earth orbital velocity


was within the sensitivity pattern of the interferometer. In the event no difference was detected however


the apparatus was oriented with respect to the direction of travel of the earth. The Michelson experiment


had given negative results because travel at high speed induced a contraction in length of apparently solid


bodies and that the contraction resulting from travel at Earth orbital velocity, though very small indeed,


was exactly the amount needed to contract the apparatus used so as to cancel out the predicted result.


Two conclusions were drawn: 1 Since ether was not detected, the medium ether had not existed 2 As to


measurements generated no measurable gap with the Earth direction of movement, light should have been


travelled at a constant speed irrespective of the position of the source or observer.


Relative motion


Relative motion is the relationship between two different objects in different inertial states. For instance, a


light source moving at a uniform rate of speed relative to a stationary observer, or two such light sources


in motion relative to each other, etc. Less understood are the relationships of the motions involving the


light source and observer, or two light sources, and the light radiating from such sources. Take, for


instance, the light radiating at speed c in all directions from a light source that is moving at speed v


relative to an observer. In considering such examples it is rather obvious that such an observer can only


speculate on the light radiating in all directions from such source based on the light that radiates in the


direction of that observer. More specific observer can only detect the light that radiates directly to that


observer’s present point in space. Then upon applying the single point of existence principle to each of the


three entities, i.e. source, light, and observer, it is apparent that the observer and detected light are at the


same location in space at that instant relative to the source which is at some other location. Obviously,


then, the source is not at the location it was when the detected light was emitted, but is at some other


location at the exact instant the light is detected. Thus, these two points, the source and observer locations


are each at a single location in all reference frames at the instant of detection. The point of emission,


however, varies from frame to frame depending on the relative motion between frames. We can show the


source and observer in the same spatial relationship to each other in all reference frames, but the emission


point, where the detected light was emitted, varies from one frame to the next depending on the relative


motion of the source to the observer in those reference frames.


Joseph Rybczyk


The displacement of the position


Would be when the observer in orbit finds the source is displaced from its predicted position. The opposite


of that would be aberration which in that case the observer moving to one side of the source would feel


that the source appear to be the other side back whereas she is seen displaced in the opposite position. This


effect which causes by a direct relation between the speed of source and the moment of the observer


considered to be of relativistic nature. The angle of aberration, the relative velocity along with a timebased


approach might establish a relation that can be applied to the tangential velocity of the observer


moment. Incoming light from the source would be shifted at angle determined by the velocity of the orbit.


Relative velocity of the radiating light source as to the observer point would be given by diagonal of the


velocity vector.


The angle of aberration


s is considered to be the angle of aberration of radiative light source relative to the moment of the


observer. Incoming light from the source would be shifted at angle determined by the velocity of the orbit.


The velocity of the radiation along with its direction, angle of aberration relative to the observer formed by


the incoming source velocity constitute the equation tans=Vcosα/C-Vsinα; implying the observer moving


at right angles to the source experiences a relative velocity of the radiation from that. When the observer


and the source are separated by a distance but both experiencing the same velocity at the same frame of


the reference, the travel time for the radiation would be in a simple relationship; t=distance/c, since the


observer velocity relative to the source might be ignored in this frame. What is important is when the


observer does not move across a line from him/her to the source; in that case the radiation reaches the


observer at the speed of the light c with no aberration and the travel time would be same as above; t=d/c.


If the radiation did not travel direct from the source to the observer in a frame of reference where both are


stationary, irrespective of the moment of the frame then the laser adjustment accuracy achieved on earth


would not be likely to control as the beam would continue moving relative to the target at a variable rate as


to the rotation and orbit of the earth.


Observer perceived cycle time


The source velocity has the effect to raise or lower the energy level of the signal by increase or reduction of


the radiation via the change in wavelength, while the radiation velocity remains constant. When the


observer moves he/she might not be able to see the radiation from the source in some other frame of


reference as being at a constant value of c with regard to the observer, unless the source begin to move at


the same velocity as the observer, that is to say, in line with him/her. Or both would remain stationary at


the same reference frame. From having the same velocity as the source every motion from the observer's


frame would result in a relative change of the value of the velocity of the radiation. From a moving or


stationary within the observer's frame of reference the radiation travels toward the observer at a constant


speed. If the observer moves within this frame of reference the result would be a relative change of the


value of the the radiation velocity with regard to the observer.


Rotational sources


Rotating radiative sources moving in a plane line with observer would accelerate or decelerate with respect


to the observer. The addition of the source velocity to the speed of the radiation ruled out based on the


observations by leading scientist Willem de Sitter of the regular motion of twin stars. The result was that


the change of speed would not be added to the value of the radiation velocity. What would happen was that


the wavelength perceived by the observer would change with an accompanied change in the frequency at a


constant value. If the source rotation centre or the observer were also moving, there would be a further


overall change of wavelength or cycle time. The resulting effect was that orbiting or rotational radiative


bodies would provide means of evaluating their velocity relative to the observer in case the source


character was known. The observed frequency would varies to give a peak at max relative rotational


velocity.


Low Density Inflationary Universes


We know that the universe is not empty but filled with matter, and ordinary matter through gravity


attracts other matter, causing the expansion of the universe to slow down. If the density of the universe


exceeds a certain threshold known as the critical density, this gravitational attraction is strong enough to


stop and later reverse the expansion of the universe, causing it eventually to recollapse in what is known


as the "Big Crunch." On the other hand, if the average density of the Universe falls short of the critical


density, the universe expands forever, and after a certain point the expansion proceeds much as if the


universe were empty. A critical universe lies precariously balanced between these two possibilities.


Why a Universe of Critical Density?


For quite some time it has been known that the mean density of our universe agrees with the critical


density to within better than a factor of ten. Even with such large margin of error this agreement is


remarkable. Establishing initial conditions so that the mean density remains close to the critical density


for more than a fleeting moment is much like trying to balance a pencil on its point. A universe initially


with slightly subcritical density rapidly becomes increasingly subcritical and soon indistinguishable from


an empty universe. Similarly, an ever so slightly supercritical universe rapidly collapses into a Big Crunch,


never reaching the old age of our universe. For a long time it was regarded simplest and aesthetically most


pleasing to postulate that our universe is now of exactly critical density. The versions of inflation


developed in the early 1980s provided a mechanism for setting the density of the universe near the critical


density with nearly unlimited precision. For many years an exactly critical universe was touted as one of


the few firm predictions of inflation.


Geometry and the Density of the Universe


In Einstein's General Theory of Relativity, formulated in 1915, gravity is understood in terms of geometry


rather than as just another ordinary force. Matter tells space-time how to curve and the resulting spacetime


curvature tells bodies how to move. For the special case of an expanding universe, idealized as filled


with a uniform density of matter, a good approximation on large scales, General Relativity establishes an


intimate connection between the density of the universe in comparison with the critical density and its


geometry. A universe of critical density (at constant cosmic time) has the familiar Euclidean geometry so


well known to us from every experience and from classical perspective as taught in art class. However, a


universe of subcritical or supercritical density has a non-Euclidean geometry---hyperbolic if the density is


subcritical, or spherical if the density is supercritical. If the curvature of the universe would become


apparent only on scales beyond several million light years we might be deceived into believing that its


geometry is Euclidean, Only on large scales---larger than the so-called curvature scale---do the differences


between the geometries become large effects. The following three plates illustrate the difference in


perspective between the three possible geometries: a hyperbolic geometry, a Euclidean geometry, and a


spherical geometry. In all three cases, space is divided into identical compartments, whose edges are


indicated by the rods. The balls within the compartments are of identical size, and increasing distance is


indicated by reddening. In the Euclidean geometry space is divided into cubes and one experiences the


ordinary, familiar perspective: the apparent angular size of objects is proportional to the inverse of their


distance. Hyperbolic space shown here is tiled with regular dodecahedra. In Euclidean space such a regular


tiling is impossible. The size of the compartments is of the same order as the curvature scale. Although


perspective for nearby objects in hyperbolic space is very nearly identical to Euclidean space, the apparent


angular size of distant objects falls off rapidly. The geometry of spherical space resembles the surface of


the earth except here a three dimensional rather than two-dimensional sphere is being considered.


Perspective in spherical space is peculiar. Increasingly distant objects first become smaller as in Euclidean


space, reach a minimum size, and finally become larger with increasing distance, This behavior could be


due to the focusing nature of the spherical geometry.


Stuart Levy of the University of Illinois, Urbana-Champaign and by Tamara Munzer of Stanford University


for Scientific American. Copyrighted and reprinted with permission.


What is the Geometry of Our Universe?


During the 1981s observations remained sufficiently crude so that a universe of critical density was quite


plausible. But more recent observations have made it increasingly difficult to reconcile a critical universe


with the observations. It is known that in addition to the luminous matter seen in the form of stars the


universe contains a large amount of "dark" matter, in particular in the halos around galaxies. The presence


of this dark matter is inferred from its gravitational pull on the surrounding matter. Since the dark matter


is distributed in a less clustered manner than the luminous matter, the apparent average density seems to


increase as larger and larger scales are probed. For a long time it was hoped probing sufficiently large


scales would uncover a critical density of dark matter. Today it seems unlikely that this hope will ever be


realized. It is now possible to probe the average density of the universe on scales large enough to


compromise a fair sample of the universe. We present the so-called "cluster baryon fraction" as one


illustrative example of the strong evidence in favor of a universe of subcritical density. Rich clusters of


galaxies are the largest bound systems in the universe. Using nuclear physics can determine the baryon


density of the universe. With the density of baryonic matter known, the total density can be determined


from measuring the baryon fraction. The baryonic mass of a cluster can be determined by adding the


masses of the constituent galaxies inferred from their light to the mass of the hot intracluster gas, which


can be determined from X-ray observations of emission from the gas. The total mass can be determined by


a variety of methods. The motions of the constituent galaxies allow one to determine the depth of the


potential well and hence the total mass of the cluster. X-ray observations allow the same to be done with


the gas, and gravitational lensing of background objects by the gravitational field of the cluster, resulting


in the distortion in appearance of background galaxies, provides a completely independent check of the


total mass. These techniques, and a number of independent techniques as well, suggest a universe with


approximately one third of the critical density. Although a universe of critical density cannot yet be ruled


out definitively, the possibility of a critical universe now appears like quite a long shot.


Reconciling a Low Density Universe with Inflation If the universe is in fact of subcritical density, does this


require abandoning inflation? If a flat universe really is a "prediction" of inflation as once claimed, one


would have to give up inflation. There however exists an escape from this dilemma. Inflation within a


single bubble can create a smooth universe with a hyperbolic geometry, just as is required for a universe of


subcritical density. Inflation smooths the universe by postulating an early epoch of extremely rapid


expansion during which whatever irregularities may have existed prior to inflation are virtually erased. In


ordinary inflation, as developed by Guth, Linde, Albrecht, and Steinhardt, this smoothing flattens the


universe as well, yielding a universe of critical density. In ordinary inflation, a critical universe could in


principle be avoided by shortening the amount of inflation, but in that case the smoothness on large scales


remains a mystery, causing inflation to lose most of its appeal.


The Creation of a Single Bubble Open Universe


In single bubble open inflation there are two epochs of inflation. In inflation the rate of expansion is


controlled by a scalar field, known as the inflation field. The inflation field wants to roll down the hill to


the bottom and as the field descends the rate of expansion of the universe decreases, eventually ending the


epoch of inflationary expansion. In open inflation the inflation field at first remains stuck in a local


minimum of the potential. While the field is stuck there, a first epoch of inflationary expansion takes place


during which the universe is smoothed. In fact during this epoch the symmetry of the space-time is so


large that no particular time direction is preferred over any other. According to classical physics, once


stuck in the local minimum the inflation field never escapes; However, quantum mechanics allows the field


to tunnel through the barrier, This tunneling occurs through the nucleation of a bubble that subsequently


expands. Subsequently, the bubble expands at the speed of light. It cannot have any velocity other than the


speed of light, for else a preferred time direction would be required to exist. The surfaces on the bubble


interior on which the scalar field is constant have a hyperbolic spatial geometry, and these are the surfaces


that we inside the bubble later perceive as surfaces of constant cosmic time. As one passes inside the


bubble, the interior continues to inflate, creating a universe with a large curvature radius. Further inside


the bubble the energy of the inflation field is converted into ordinary matter and radiation, and the


hyperbolic universe continues to expand and cool down.


How Can We Test Open Inflation?


The best hope for testing open inflation derives from measuring the geometry of the universe, which can


be determined through observing the ripples in the cosmic microwave background radiation. The 3K


cosmic microwave background radiation emanates from an epoch approximately three hundred thousand


years after the Big Bang, when the universe was approximately one thousandth its present size. At this


time the electrons, because of the cooling of the universe, combined with protons and other nuclei to form


neutral hydrogen and other elements. Because of this change in composition from a highly ionized plasma


to a neutral gas, the formerly opaque universe becomes virtually transparent. The non-uniformities in the


microwave background provide a snapshot of the ripples at that time, which later developed into galaxies


and the structure that we observe today. Inflation in general, and open inflation on scales much shorter


than the curvature scale, imprints essentially scale free fluctuations on the matter filling the universe. At


recombination, however, the physics at that time, believed to be well understood, introduces a preferred


scale of known length on which the first acoustic oscillations of the plasma occur. This scale is of known


physical size, and from its angle subtended in the sky today, we can determine the geometry of the


universe.


More General Open Inflation


The above models for open inflation provide a counter-example to the standard lore on inflation, but they


rely upon the presence of a local minimum in the potential energy of the inflation field. At our present level


of understanding, we simply cannot tell whether this is what is predicted by a more fundamental theory


such as M-theory or supergravity. But in the model theories for which we can calculate the inflation


potential energy, such local minima do not usually appear. Last year, Hawking and Turok realised that


open inflation was in fact much more general, and could even occur in a theory where there is no local


minimum in the inflation potential energy. In fact, they showed that for essentially any potential energy


function allowing inflation, an open universe similar to that obtained in the expanding bubble described


above could be formed. Hawking and Turok's calculation was performed in the framework of a proposal


for the initial conditions made in 1983 by Hawking and James Hartle. They proposed that the initial


condition for the universe should be that it possessed no initial boundary. One can picture the space-time


of an expanding universe as the surface of a cone, placed vertically with its sharp tip down. Time runs up


the cone: space runs around it. Time and space end at the sharp tip. The tip is `singular' in mathematical


terms and if this were a model of the universe we would find all our equations break down there. Instead,


Hartle and Hawking proposed that the tip be rounded off. This rounding off is only possible if the nature of


space-time changes in the vicinity of the tip. In effect, all directions must become `horizontal' near the tip,


that is to say, all directions are spacelike. This is just what we need to explain how time began. In effect the


distinction between space and time is blurred and space is then rounded off.


M. Bucher and D. Spergel, "Inflation in a Low Density Universe," Scientific American,1999


































                                      Light in contact with matter






























The QED


The theory of interaction of light with matter is called QED. The subject is made to appear more difficult


than it is indeed by the very many equivalent methods by which it might be formulated. One of the


simplest is that of Fermi. We shall take another starting point by just postulating for the emission or


absorption of photons. The transition to quantum electrodynamics involves the assumption that the


oscillators are quantum mechanical.


Richard Feynman


Feynman electrodynamics


In Feynman’s words, the field is introduced in the Hamilton picture as a device to hold the track of all those


photons that the electron might scatter in the future. You need to know their positions and momenta at the


present instant, and you need to determine their future positions by solving their equations of motion


along with the electron's. To Feynman, this was an unnecessary package to have to carry along as we travel


through space-time. He proposed instead to take an overall space-time view that not only eliminates the


need for fields, but is intrinsically relativistic. Like Schwinger and Tomonaga, he recognized the inherent


non relativistic nature of the Hamiltonian method. But whereas they stayed within that framework and


instead reformulated it by replacing absolute time as the running parameter with one that was suitably


relativistic, He proposed to discard the whole method.


Thomson scattering


Or the scattering of a photon by an electron at rest applies at low photon energy when hv<


photon energy is comparable to or greater than the electron energy, non classical effects should be taken


into account and the process is called compton scattering. a further interesting situation develops when


the electron is moving- in this case energy can be transferred to the photon, and the process is called


inverse compton scattering which is an important mechanism in high energy astrophysics. In Thomson


scattering we have dσT/dΩ=1/2 r02(1+cos2θ where σT is the Thomson cross/section, Omega the solid


angle,θ is the angle of scattering and r0 is the classical electron radius which equals e2/mec2.The incident


photon and scattered photon have the same wavelength or energy, so this scattering is called


coherent/elastic. If we now move two photons of energy hv~≤c2 the scattering is modified by the


appearance of quantum effects through a change in the kinematics of the collision.


Compton Scattering


In his explanation of the Compton scattering experiment, Arthur Compton treated the x-ray photons as


particles and applied conservation of energy and conservation of momentum to the collision of a photon


with a stationary electron. Observed the scattering of x-rays from electrons in a carbon target and found


scattered x-rays with a longer wavelength than those incident upon the target. The shift of the wavelength


increased with scattering angle according to the Compton formula:Using the Planck relationship and the


relativistic energy expression, conservation of energy takes the form hv+mec2= hv'+√p 2ec2+m2ec2 Ee= hv


α(1-cosθ)/1+α(1-cosθ), α= hf/mc, E=hv;incoming photon energy, θ= photon scattering angle,


Energy+momenta of the Scattered photon E=hv'; p=hv'/c at θ=4π/3, α=1.022 ; the expression above


simplifies to maximum energy transfer to electron Eemax=1.5α/1+1.5α= 60 percent
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Pair Production




If a photon enters matter with an energy in excess of 1.022 MeV it might interact in a procedure called →





pair production. The photon passing near the nucleus is subjected to strong field effects and might


disappear as a photon and reappear as a positive negative electron pair. The two electrons produced e-,e+


are not scattered orbital electrons but are created, de novo, in the energy/mass conversion of the


disappearing photon. In Pair Production, the energy of the photon is converted into mass, and the remnant


of energy not absorbed as mass energy is converted into kinetic energy. Thus, the correlation of the DP


associated with the photon is fully converted to the particle- centered form of energy. The photon travels


only at the speed of light, whereas the mass travels at a rate that reflects the amount of energy associated


with the amount of kinetic energy remaining after forming the mass. Conventional physics recognizes that


gamma rays passing close to an atomic nucleus form an electron-positron pair. But the conventional


physics model of the universe does not have a robust mechanism for offering how a photon traveling


through the vacuum of space could produce such an effect. Two possible mechanisms for pair production


might be at place: Either the pair decays from the g-ray itself as to the fact that gamma ray is an electronpositron


pair that splits into a pair in an environment such as the stressed space of the nucleus, Or Space is


filled with electron-positron pairs which can be re-energized into real particles provided the heavy nucleus


and properly oriented high energy photon. Obviously, the second possibility is a reflection of the Theory as


it has been developed. Thus, pair production becomes one of the cornerstones of evidence that


substantiates the existence of the Dipole. In essence, the Theory is first a hypothesis about the substance


and nature of the building blocks of the universe. Secondarily, the Theory is a study in the mechanisms


observed in nature, and a subsequent examination of the consistency of the theoretical mechanism with


the experimental evidence. In the case of pair production we see a mechanism by which particles transform


between one type of Dipole to another. Such transformations between various states of energy and


interactions between various configurations of energy are the essence of the processes of life. The


conversion of the energy of the photon into the energy of the positron and electron mass takes work. The


original state of the Dipole was a flat uniformly distributed volume of equidistant particles. By adding it


into Dipole and modifying it through a special process it takes the configuration of a mass. The order of


Dipole held by Photon is complete and conserved as its order is transformed into a new type of order as the


electron and positron. The key principle which produced the conversion of the high energy gamma ray into


the positron and electron is the longitudinal stretching of the inner and outer limb of the g ray photon.


Such a process is the modifying of the very singular nature of photon that its integrity can be severed into


two parts while positron and electron can recombine. In particular, the 2nd law of thermodynamics, which


states that the interactions always increase or maintain the amount of randomness in a system. Entropy is


the measure of randomness in a system, and clearly the breaking of a 1.022 Mev photon into two .511 Mev


photons is an increase in the entropy of the system. Entropy is not the driving factor that moves particles,


and it does not cause or prevent transformations of state. Entropy includes the concept that a system has a


particular state, that a force can disturb the state, and that the particles or elements of the system can be


moved away from that state of order. In the case of pair production and the observed photon split, a force


was applied to the photon which overcame the strength of its internal boundaries. By stretching the


photon’s wave-front beyond its ability to continue to transform the E field into B field, and vice versa, the


photon’s internal integrity was broken. The Dipole used to be the place for the photon at which it separates


into two and thereby expand its randomness. Such is the general consideration in all cases of


transformation of structure and state; a force is applied to the system which is greater than the force


constraining its current configuration. Obviously, transition into a new state cannot take place if there is


adequate force against it. “What are the forces that are acting on the system to change its state"? "what is


the energy barrier opposing the transition"? The splitting of the photon into two requires an activation


energy. systematic procedures require an activation energy to initiate a reaction that changes state. On


physical level, the forming or breaking of a molecular bond requires an activation energy. In the case of


bonding together two atoms to form a molecule, the repulsion of the outer atomic shells must be overcome


with the kinetic energy that is directing the two atoms toward collision. In effect, the energy contained


within the system will be used as the force acting on the two atoms to create a new state. The collision of


two atoms deforms the outer orbitals, enables them to be in a position where it is favorable to share


electrons, and thus forming a new molecular species. The kinetic energy contained in the relative motion


of the two particles enabled them to overcome the barrier state of their mutual outer orbital repulsion.


Returning to the examination of a photon splitting into an electron and positron, the activating energy of


this system is provided by the photon which has sufficient Electromagnetic energy to stored within its


structure to form two constituent particles. The photon should have been entered into a space where it can


undergo a reaction with an environment . The velocity of the photon which moved it toward the nucleus,


the organizational state and internal dynamic process of the photon, and the gradient of conduction


density provided by the nucleus, all came together to provide an environment where the internal structure


of the photon was broken apart to form two particles in the place of a single photon. The high-energy g ray


photon splits into two regions due to the differential in speed of light between the photon’s inner and


outer limb. The Dipole is separated into a positive and negative region by the E field of the photon. The


balance of the photon’s EM energy not converted into mass-energy is converted into kinetic energy or


photonic energy. The stretching of the photon between the inner and outer limb, and the precipitation of


the electron and positron into these two regions consumes a portion of the photon’s E field energy. But, if


the energy of the photon is greater than 1.022 Mev, then the rest of the energy of the photon should either


transferred to another photon, or converted into kinetic energy associated with the masses. The method by


which the photon converts its energy into kinetic energy is as follows: (1 the E field splits the Dipole into a


positron and electron, (2 The remnant of the E field not absorbed as mass-energy then acts on the electron


and positron and forces them in opposite directions. The E field that splits the DP into a positron and


electron was initially operating as a field with a particular orientation. The concept of the E field having a


direction means that positive charges move in one direction under its influence, and negative charges


move in the other. Thus, as the photon breaks into two separate regions, the E field will still be acting on


the newly created electron and positron to accelerate them. And since an E field, which has only a single


direction, will push a positive and negative particle in opposite directions, the remnant of the photon’s E


field will accelerate the new positron and electron and cause them to separate. The heavier the nucleus, the


higher the gradient of negative and positive DP formed in the volume close to the surface of the nucleus.


The higher concentration of positive and negative DPs around a heavier nucleus means that there is larger


volume available for possible pair production, and hence a greater probability of a gamma ray producing


an electron positron pair. This is why a heavy nucleus such as lead is used as a radiation shield for rays. A


heavy nucleus is more effective than lighter elements in causing Pair Production. After the pairs are


formed, they cancel out each other, creating lower energy gamma rays that may cause further pair


production or ionization. Electrons will be recaptured, and vibrate the lattice. The pathway is in essence a


downward path of energy concentration from a high energy gamma to low energy thermal vibration of


many molecules. A quantum concept is the fact that the G-ray should provide at least the 1.022 MeV of


energy to generate sufficient energy to form the organizational charge structure of the electron and


positron. This amount of organizational energy is needed to separate out a negative and positive from the


DP and get them far enough apart that they can exist as separate entities. The G-ray and all photons, have


an alternating E field and B field, and the conventional symmetry arguments refer to this as angular


momentum, or spin. And, after electron and positron are formed, they both are considered to have a spin.


Evidence of this spin, is seen in the Pauli Exclusion Principle which does not allow two electrons in the


same electron orbital to have the same spin. Thomas Lee Abshier,ND


Photons splitting in three


A single photon can be split into three, thanks to the work of an international team of physicists. The


achievement could open up new avenues in the field of quantum information. The ability to split photons


may not sound as extraordinary as other achievements in quantum physics, but for decades it has proved


crucial to the success of many experiments. Often researchers need to know that photons are emitted at


precisely the same time and are in phase with each other, and this is almost impossible if the photons come


from separate sources. In the past, devices have been able to split a photon only into two. In the typical


method used to achieve this, known as parametric down-conversion, a laser beam is shone into a special


'non-linear' crystal ― crystals that exhibit unusual optical effects under intense laser light. Occasionally, a


single photon from the beam converts into two photons, each with a portion of the original's energy and


momentum. Researchers have known that, in theory, it would be possible to split one of these new photons


again in a 'cascaded down-conversion', making a total of three photons. But there has been a catch: the


probability of one photon splitting is normally just one in a billion, making the probability of it happening


twice in succession one in a billion billion. Experimentally, this has been too small to contemplate.


Technology has improved over time, however, and now Thomas Jennewein of the University of Waterloo in


Ontario, Canada, and his colleagues have made three-photon generation a reality. The team used periodic


poled potassium titanyl phosphate PPKTP and periodic poled lithium niobate PPLN ― non-linear crystals


that are more efficient than those generally used in previous experiments ― and inserted a wave guide


into one. The wave guide helps to confine the optics along the crystal's length to increase efficiency


further, so that the probability of a photon splitting into three is one thousand times greater.


Jon Cartwright


The Stern-Gerlach experiment


From the time of Ampere onward, molecular currents were regarded as giving rise to magnetic moments.


In the nuclear model of the atom the electron orbits the nucleus. This circular current results in a magnetic


moment. The atom behaves as if it were a tiny magnet. In the Stern-Gerlach experiment a beam of silver


atoms passed through an in-homogeneous magnetic field.


In Larmor's classical theory there was no preferential direction for the direction of the magnetic moment


and so one predicted that the beam of silver atoms would show a maximum in the center of the beam. In


Sommerfeld's quantum theory an atom in a state with angular momentum equal to one/L=1, would have a


magnetic moment with two components relative to the direction of the magnetic field, ・}e /4m. In an inhomogeneous


magnetic field, H, the force on the magnetic moment will be z x (Gradient of the magnetic


field in the z direction), where z = ・} e /4m, where e is the charge of the electron, m is its mass, h the


Planck's constant, and z is the field direction. Thus, depending on the orientation of the magnetic moment


relative to the magnetic field there will be either an attractive or repulsive force and the beam will split


into two components, exhibiting spatial quantization. According to quantum theory z can only be ・}


(e/2me)( /2π). In this case the spot on the receiving plate will therefore be split into two, each of them


having the same size but half the intensity of the original spot. This difference in prediction between the


Larmor and Sommerfeld theories was what Stern and Gerlach planned to use to distinguish between the


two theories. Stern remarked that the experiment, if it can be carried out, will result in a clear-cut decision


between the quantum-theoretical and the classical. Sommerfeld's theory also acted as an enabling theory


for the experiment. It provided an estimate of the size of the magnetic moment of the atoms so that Stern


could begin calculations to see if the experiment was feasible. Stern calculated, for instance, that a


magnetic field gradient of 104 Gauss per centimeter would be sufficient to produce deflections that would


give detectable separations of the beam components. He asked Gerlach if he could produce such a gradient.


Gerlach responded affirmatively, and said he could do even better. The experiment seemed feasible. The


silver atoms pass through the inhomogeneous magnetic field. If the beam is spatially quantized, as


Sommerfeld predicted, two spots should be observed on the screen. The beam splitting into three


components, which would be expected in modern quantum theory for an atom with angular momentum


equal to one. A preliminary result reported by Stern and Gerlach did not show splitting of the beam into


components. It did, however, show a broadened beam spot. They concluded that although they had not


demonstrated spatial quantization, they had provided evidence that the silver atom possesses a magnetic


moment. Stern and Gerlach made improvements in the apparatus, particularly in replacing a round beam


slit by a rectangular one that gave a much higher intensity. There was an intensity minimum in the center


of the pattern, and the separation of the beam into two components was clearly seen. This result seemed to


confirm Sommerfeld's quantum-theoretical prediction of spatial quantization. The Stern-Gerlach result


posed a problem for the Bohr-Sommerfeld theory of the atom. Stern and Gerlach had assumed that the


silver atoms were in an angular momentum state with angular momentum equal to one (L = 1). In fact, the


atoms are in an L = 0 state, for which no splitting of the beam would be expected in either the classical or


the quantum theory. Stern and Gerlach had not considered this possibility. Had they done so they might


not have done the experiment. The later, or new, quantum theory developed by Heisenberg,


Schrodinger, and others, predicted that for an L = 1 state the beam should split into three components as


shown in Figure 12. The magnetic moment of the atom would be either 0 or ・} e /(4π x m). Thus, if the


silver atoms were in an L = 1 state as Stern and Gerlach had assumed, their result, showing two beam


components, also posed a problem for the new quantum theory. This was solved when Uhlenbeck and


Goudsmit (1925, 1926) proposed that the electron had an intrinsic angular momentum or spin equal to /


4π. This is analogous to the earth having orbital angular momentum about the sun and also an intrinsic


angular momentum due to its rotation on its own axis. In an atom the electron will have a total angular


momentum J = L + S, where L is the orbital angular momentum and S is the spin of the electron. For silver


atoms in an L = 0 state the electron would have only its spin angular momentum and one would expect the


beam to split into two components. Goudsmit and Uhlenbeck suggested the idea of electron spin to explain


features in atomic spectra such as the anomalous Zeeman effect, the splitting of spectral lines in a


magnetic field into more components than could be accommodated by the Bohr-Sommerfeld theory of the


atom. Although the Stern-Gerlach results were known, and would certainly have provided strong support


for the idea of electron spin, Goudsmit and Uhlenbeck made no mention of that. The Stern-Gerlach


experiment was initially regarded as a crucial test between the classical theory of the atom and the Bohr-


Sommerfeld theory. In a sense it was, because it showed clearly that spatial quantization existed, a


phenomenon that could be accommodated only within a quantum mechanical theory. It decided between


the two classes of theories, the classical and the quantum mechanical. With respect to the particular


quantum theory of Bohr and Sommerfeld, however, it wasn't crucial, although it was regarded as such at


the time, because that theory predicted no splitting for a beam of silver atoms in the ground state (L = 0).


The theory had been wrongly applied. The two-component result was also problematic for the new


quantum theory, which also predicts no splitting for an angular momentum zero state and three


components for an L = 1 state.


Particle scattering and cross sections


When particles interact with a target; most of them continue on unscattered, some of them interact with


the target and scatter. Those that do scatter do so at a particular angle in three dimensions, i.e. you give




the scattering angle as a solid angle d which equals sinθ dθdφ, where φ and θ are the Ω spherical angles.


The number of particles scattered into a specific dΩ per unit time is proportional to a very important


quantity in scattering theory which is the differential cross section given by dδ(φ,θ(/dΩ as the measure of


the number of particles per second scattered into dΩ per incoming flux. The incident flux , J also called the





current density is the number of incident particles per unit area per unit time.


Photons splitting in two


Whatever happened to one particle would thus immediately affect the other particle, wherever in the


universe it may be. Einstein called this "Spooky action at a distance." When photon splits into two photons,


the resulting photon pair is considered entangled. Researchers have detected glimpses of a rare event in


which a single photon splits in two. If a fat man walked into an empty room and then two skinny guys


walked out, you might be perplexed. Now physicists have spotted the equivalent result in photons flying


near an atom. A group publishing in the 5 August 2002 print issue of PRL has identified rare instances in


which a single photon splits in two, dividing the original photon’s energy between them. Fundamental


particles constantly and randomly morph into “virtual” particles. A photon, for example, can temporarily


become an electron and positron which quickly cancel out each other to reform the original photon. In a


vacuum the process has little effect, but the electric field of an atom can interact with electron-positron


pairs to create theoretic measurable results, some of which have already been fingered. One such event,


which researchers had sought for decades, is photon splitting. In unrelated experiments, physicists


studying quantum optics often create pairs of photons from single, higher energy photons by hitting a


special crystal with laser light, but that process involves exciting the crystal’s atoms. In photon splitting, a


photon first transforms into an electron-positron pair; then one of those particles emits a photon before


cancel out its partner to produce the second photon. In 1995, a team at the Budker Institute of Nuclear


Physics BINP in Novosibirsk, made the first observation of photon splitting, and they announced


preliminary results at two conferences. They completed their full analysis of the data, which turned up


more splitting events than before and allowed them to compare the predictions of exact quantum field


theory with the conventional approximation. The team used highly energetic gamma rays; photon energies


between 100 and 450 MeV, which they produced by colliding infrared photons head-on with a high-energy


electron beam. These pumped up photons were less likely to engage in interactions that would have


obscured detection of the split photons. The high energy beam passed through a bismuth germanate


crystal target into detectors, of 1.6 billion photon hits, only around 405 photon pairs fit the bill.


JR Minkel


Multiple Scattering


Our work is to treat multiply scattered light as a continuous distribution. For optical thick medium like


marble or milk, light transport can be approximated as a diffusion process, on the assumption that


penetrating light will become isotropic . However, this assumption does not hold in a volume representing


fiber, as light scattering in an assembly of fibers remains strongly directional even after several


interactions. Another class of methods, including volumetric path tracing and volumetric photon mapping,


simulate scattering events in a medium based on a known density and phase function that may vary


spatial. But in a volumetric representation of fibers, both the density and the phase function depend on


position and direction, and neither is known a priori. Our particle tracing algorithm deposits photons


uniformly along particle paths. A related modification to particle tracing is storing the path segments


themselves in a photon map. However, this technique has not yet been demonstrated to work with


participating media, nor in the dense and complex geometry. Our photon map also uses a 6D tree structure


to locate photons nearby in both position and direction. Such high-dimensional structures have been


successfully used to incorporate time-dependent effects into photon mapping. Measurements have shown


that a large fraction of the light scattered from light colored fibers goes into the hemisphere facing away


from the light source, and that the scattered light is confined to the fairly sharply defined cone of


directions with inclinations near that of the incident direction. There are three significant modes of


scattering from a single fiber: one is surface reflection, the second transmission through the fiber, and the


third mode internal reflection. This highly directed, strongly forward scattering behavior leads to spread


out but still focused radiance distributions in fiber, breaking the assumptions on which previous efficient


rendering algorithms for participating medium are based. In a strongly forward scattering material, we


might expect to see a large contribution from multiple scattering compared to single scattering, since the


majority of the incident energy is scattered into the material where it cannot be directly observed. As with


diffusion-type multiple scattering in homogeneous medium, such as most translucent solids, the multiply


scattered light causes a spatial spreading of the light, softening geometric features and blurring hard


shadow edges. A translucent-like glow can be seen around the edges of the spot, indicating that light


travels over significant distances through the medium before it emerges; Both of these effects should have


been due to multiple scattering. We assume that the incident radiance on a fiber can be treated as a smooth


function of its position, even though the exact radiance field in a fiber volume is very discontinuous. In


regions where fibers are pressed tightly together, they may tend to pack in a semi-ordered structure,


which could invalidate this smoothness assumption, but for the more typical regions of loosely packed


fibers it seems reasonable. This assumption of smoothness underlies our approach to accelerating the


computation of multiple scattering: to evaluate the contribution of multiple scattering to the image, we


need to represent the function Ls(x,ω) that gives the average indirect radiance observed from points near


the 3D point x when looking in directions near the direction ω. Because of the assumption of smoothness,


this average will be computed over a volume of radius considerably larger than the spacing between fibers,


and over a solid angle at least as wide as the width of the cone in the fiber scattering function. Note that Ls


is a function on a 5D domain; three spatial and two angular dimensions, Direct illumination from light


sources is not included in Ls. Here we generate random scattered directions by simply tracing photons


through an elliptical cylinder, simulating surface scales and roughness by rotating and jittering the


normals at each interaction. Reflection or refraction is chosen according to the appropriate probability at


each interface. The photon intersection computations are done in isolation from the rest of the geometry,


leading to an efficient procedure for choosing random directions. We use a two-pass method to compute


the illumination on visible fibers due to multiple scattering. In the first pass, particles are traced from light


sources into the fiber volume and followed through multiple scattering events, and their positions and


directions are stored into a 5D hierarchical data structure to record the flow of particles through space. In


the second pass a density estimate is performed simultaneously in position and direction to estimate the


radiance arriving at a fiber from a particular direction. The method is most closely related to volume


photon mapping, but there are several important differences. First, photon tracing is done using geometry;


no continuous medium is used; Second, we deposit photons along the particle paths with uniform


probability rather than at the interactions themselves; Third, we use a 5D density estimate rather than 3D,


to better handle strong directional variations in radiance; Together these changes result in a weighted


photon density that is simply equal to the indirect radiance Ls(x,ω). During particle tracing, photons are


generated along the path of each particle with a constant probability per unit length. We expect the


number of photons recorded in a particular volume with directions in a particular solid angle is directly


proportional to the total length of particle paths within that volume and solid angle. This path length is in


turn proportional to particle flux, and for suitably small volumes and solid angles the density of particles is


an estimate of the radiance. In volumetric photon mapping, particles are stored at each scattering event,


producing a density that is proportional to the amount of out scattered radiance. The photon map is then


used to estimate the in scattering term of the volume rendering equation, which redistributes the out


scattered radiance, so this density is exactly what is needed. Since the individual scatterers/fibers are


visible, we intend to use the photon map to compute illumination on an individual fiber; To do this we


estimate the radiance distribution in the volume before it interacts with the fiber. If photons are placed in


the map when paths interact with fibers, their powers should be divided by the local fiber density in their


direction in order for photon density to be used to illuminate fibers. As we show in the next part, photons


therefore need to carry a quantity that is power times distance. The difference in units is due to the factor


of the volume scattering coefficient σs with units of inverse distance, that is built into their density.


In conventional photon mapping, photons generated during the particle tracing pass are stored in a 3D


tree, so that the nearest photons to a given 3D point can be found efficiently; The photons are selected


without regard to direction. If radiance is mildly directional or the scattering function is fairly isotropic,


this weighting procedure works well, that would not be the case when the radiance distribution is highly


directional and the scattering function has strong peaks. If most of the nearby photons travel in directions


that don’t align with the peaks of the scattering function, very few photons will contribute significantly,


leading to high variance. In estimating the scattering integral the individual photons are treated as point


samples, we solve this problem by performing density estimation with respect to position and direction


together; A 2D example of gathering photons in both position and direction. The smaller radius gather on


the left collects photons that have directions that fall within particular angle from the look up direction


and also have positions that fall inside a circle centered at the look up point. When the radius increases on


the right, the area and the angle of the gathered region grow together. We retrieve a set of photons that


are nearby in space to a particular point and also nearby in angle to a particular direction, and use their


density to directly estimate radiance in that position and direction. This density is measured in the 5D


space that is the Cartesian product of the set of possible directions. To perform this new type of density


estimate we efficiently locate photons near a point in 5D space, then calculate the size of the region in


which they were found; Both these operations require choosing a metric for position-direction space. To


allow the use of a simple spatial data structure, we embed the 5D space in 6D Euclidean space by


representing the directions as unit vectors. That is, the point (p,ω) represented by the 6-tuple


(px,py,pz,ωx,ωy,ωz), This embedding is convenient because it is easy to define a circular solid angle


around a direction ω: it is the intersection of a sphere centered at ω with the direction sphere that is A 5D


look up in 6D Euclidean space. In 3D position space, a look up of radius r simply encompasses a volume of


4πr^3/3. In the 3D space of direction vectors, a corresponding look up of radius r/√w centered at a point


on the unit sphere will include a 2D circular solid angle of size πr2/w. The solid angle that is the area on


the direction sphere being selected by a look up of radius r around a given direction vector is: =πr2 0≤<2


=4π 2≤; Once the look up region has a radius of 2, it envelops the entire direction sphere, and so further


increases in radius have no effect. These points are stored in a 6D tree; that is, a k-D tree with k=6, which


is a straightforward 3D tree that allows for efficient n-nearest-neighbor queries using reasonable metrics


in Euclidean. Because the dimensions of position-direction space are not all of the same type, choosing a


metric defines a conversion between distances and angles. If one pair of photons with the same direction


has positions separated by a distance r, while a second pair of photons with the same position has


directions separated by an angle θ, the metric has to choose which pair is closer, This establishes a key


trade-off between directional and spatial resolution in our algorithm, which we control by explicitly


defining a weight w that can be used to adjust the relative importance of direction and Position. Since we


define and apply the metric in the 6D space in which the photons are stored, we also should ensure that it


is easy to compute the 5-volume of the region of position-direction space that falls within a particular


distance. We chose the maximum of the Euclidean metrics in Position and direction space, compared using


the weight: In practice,The weight w is chosen to provide a desirable combination of spatial and angular


accuracy for a particular scene. It also is often useful to choose ω and a maximum look up radius r max


such that r max≤√2ω to prevent any photon look up from encompassing a solid angle greater than one


hemisphere. With the metric proposed above, a 5-ball is simply the Cartesian product of a 3D sphere with a


circular solid angle. The 5-volume is then just the product of the two volumes. This would provide a


continuous trade off between space and direction that could select points spatial close yet distant in


direction as well as points nearby in direction but far away in space. This behavior, while possibly


desirable in some situations, makes it more difficult to reason about the extent of the look up, and


complicates the calculation of the 5-volume. It is important to set a maximum radius for look ups to


prevent look ups in very dark areas from wasting time searching very large 5-volumes to find enough


photons. One important implication of a 5D look up volume is that as the number of photons in the map


increases, the radius shrinks very slowly, as the inverse fifth root of the number of photons; to double


resolution, the number of photons should increase by a factor of 32. Ordinary surface photon mapping


gains a great deal of efficiency from radiance caching which allows expensive final gather computations to


be reused across a smoothly varying illumination field on a surface. Without radiance cache, a great deal of


computation is wasted performing final gathers on nearly identical illumination fields for adjacent points


on the same surface. Close-together viewing photons will land in spatial close-by positions and if similar


scattered directions are chosen, will wind up gathering nearly the same sets of photons. However, in fiber


there is no assumption of diffuse illumination, and the scattering functions of adjacent fibers can be quite


different from one another if the properties of the fibers vary, or if there is eccentricity and the fibers have


different orientations. This prevents direct reuse of results from one fiber when rendering another fiber,


even if it is only a fraction of a millimeter away. However, along the fibers we may expect the scattered


radiance to vary as smoothly as the incident light distribution varies with respect to space, provided the


amount of fiber twist is small over the typical distance of interpolation. Our method incorporates a fiber


radiance cache that allows for reuse of previously computed scattered radiance values for additional rays


that hit the same fiber. Each fiber has a list of radiance samples, and if a photon lands between two


samples and is close enough to both, its radiance will be interpolated from those samples. If there are no


nearby samples, its radiance is calculated using the photon map and the result is added to the cache. If


there is exactly one nearby sample, radiance is calculated at a point farther along the fiber and cached, so


the radiance at the original point can be interpolated from the cache. The maximum reuse distance for a


cached radiance is defined as a fixed fraction of the minimum photon map look up radius used in


computing that amount; we have used the fraction 0.5, so that a sample can be interpolated from samples


whose look up overlap by at least full radius. Using a smooth volumetric model for light scattered from


complex geometry has implications that go beyond optical fibers. Other scenes with densely packed


scatterers in which multiple scattering is important might be rendered using very similar techniques. This


idea can also be carried further, to using volumetric rendering methods for the scattering simulation as


well as for reconstructing the radiance field. We developed a number of test scenarios that include lighting


of highly complex optical fiber geometry from various angles of the spot-light. In each case, we compare


our result to the result from path tracer method that generates paths using the cylinder scattering


procedure and calculates direct illumination using the approximation. At each interaction, In every


scenarios, the fibers have identical properties: the radius, the eccentricity, the azimuthal orientation is


chosen randomly, the absorption coefficient σa per fiber radius in the spotlight scenario,σa in the backlit


scenario, and σa in the front lit scenario. The first test scene consists of several thousand nearly parallel


fibers illuminated perpendicularly by a spotlight 2 cm in diameter from a distance of 1 m. The camera is


positioned 40 cm from the center of the fiber, in a direction 15 degree toward the root of the fibers. Both


results appear quite similar, displaying important features that result from multiple scattering. The


increased amount of light toward the top of the camera is indicative of the strong directional bias of the


scattered radiance field. Another scene that cannot be accurately rendered without multiple scattering is a


composition of large volume of fibers hangs directly between a point light source and the camera. With


direct illumination only, the fibers appears unrealistic, with sharp shadows, little color, and opacity


everywhere but at the edges. Including multiple scattering softens the sharp direct illumination and


introduces a colorful translucent quality that varies with the density. This test case is very challenging for


our approach, because the majority of the photons are deposited on the back side of the model and we


calculate illumination on the front. The final part of our method using directional weight, meaning


photons are selected based on position and not direction; While the direct illumination does convey the


shape and texture of the fibers, it fails to account for a significant amount of energy in the scene, which is


evident in the added color, glow, and softness present in the path traced and photon mapped images. Here,


the photon mapping tends to spread the very directional low order scattering over a slightly broader solid


angle, causing some blurring of surface features, but the overall result is quite similar to the path traced


result. The directional weight mapping result, ignoring direction in the indirect radiance, appears much


darker and less saturated than the correct result. That might be due to the fact that in the correct solution,


the camera direction is receiving more multiply scattered light than average.


summary


The particle tracing pass takes as parameters the total desired photon count and the mean distance


between photons. Paths are generated through the fiber volume, using the cylinder model to generate the


scattered direction at each interaction. After the first interaction, photons are deposited randomly along


the path, one in every interval of the length along the path. The photons are generated even in empty


space, so a bounding volume is used that extends at least the maximum look up radius beyond the fiber in


all directions; photons are only deposited until the ray exits the volume. If the bounding volume is not


convex, the ray must still be traced to see if it reenters the volume. This process is continued until the


desired number of photons have been stored. We have demonstrated that the very difficult problem of


simulating multiple scattering, previously only approachable using path tracing, can be simulated much


more efficiently by using a two-pass particle tracing and density estimation approach. Our method builds


on the idea of volumetric photon mapping for participating medium, but with some important new


modifications. Here a crucial point should be considered: The density of stored photons needs to be


proportional to radiance, not scattered radiance, because the map is being used to light geometric fibers,


not to compute scattering in a volume.


Jonathan T. Moon+Stephen R. Marschner


The Stern-Gerlach Experiment and Spin-1/2 Systems


The Original Experiment In 1922 Otto Stern and Walther Gerlach sent a beam of silver atoms (a spin-1/2


system) through an inhomogeneous magnetic field in the z direction. Since the silver atoms have an


intrinsic magnetic moment (or spin angular momentum) they should be deflected by the inhomogeneous


magnetic field in the z direction depending on their orientation with respect to the magnetic field. When


Stern and Gerlach performed the experiment, they expected a uniform spread of the beam in the z


direction to result. Much to their surprise, the inhomogeneous magnetic field effectively split the beam in


to two parts. This result lead to the idea of quantization of spin angular momentum such that the


component of spin in a particular direction can only take on two values: +h/2 or -h /2, or what we also call


spin up and spin down, even though the spin itself is not up or down, it is the particular direction's


component that is up or down.


The Ideal Stern-Gerlach Apparatus


These simulations make use of two types of ideal Stern-Gerlach apparatus to spatially separate the spin-1/2


particles: those that use a transverse magnetic field and those that use a longitudinal magnetic field. Both


are ideal in the sense that there is no experimental error associated with using them. In other words, the


outcomes are always exactly those predicted by quantum theory. Because of this idealization, we do not


distinguish between the apparatus internal mechanisms; they are all simply referred to as ideal Stern-


Gerlach apparatus. The incident beam can either be a beam of a random or statistical mixture of spin


orientations, abeam of a particular spin eigenstate such as |z+> or




|z－>, or a beam of a particular superposition of eigenstates (such as 0.707 [z+> + |z－>]). Once through





one or more ideal Stern-Gerlach apparatus, the output is detected at the counters represented by the


horizontal bars and their associated numbers.


Transverse Stern-Gerlach effect


The original experiment by Stern and Gerlach made use of a transverse in-homogeneous magnetic field


generated by a permanent magnet perpendicular to the direction of propagation of the spin-1/2 particles.


So if a particle is moving in the x direction and is subject to an in-homogeneous field in the z direction, it


will experience a force, Fz~μzdBz/dz. Such a force will deflect the beam either up or down due to the fact


that μz=gqSz/2mc, where g is the gyromagnetic ratio,q is the particle's charge, m is the mass of the


particle, and Sz is the z component of the particle's spin. Therefore such an apparatus can be used to


spatial separate particles whose z component of spin are oriented either up or down.


Longitudinal Stern-Gerlach effect These simulations also show a different type of ideal Stern-Gerlach


apparatus: one which measures spin in the direction of propagation using, in principle, the longitudinal


SternGerlach effect. If we again assume that the direction of propagation is the x direction, the ideal SternGerlach


apparatus must have an in-homogeneous magnetic field in this direction. It is difficult to see how


this can occur with a permanent magnet, but not too difficult to imagine with magnetic field generated by a


current in a coil that the beam of spin-1/2 particles passes . The spin-1/2 articles are then “deflected” either


forward or backward thereby generating a spatial separation that in principle could be detected.


Cavity Quantum Electrodynamics


Cavity QED investigates the interaction of single atoms with single electromagnetic field modes. To achieve


the experimental goal of realizing such a system, effort was made and nowadays it is achievable even for


optical transitions. This paves the way for many interesting physical applications. Two of the most


interesting ones are for sure the use of cavity QED for the construction of a quantum network and on the


other hand its usefulness for elementary verifications of quantum mechanics.


Fabian Grusdt


Cavity


The cavity is a basic concept in all continuum models. The model in fact is composed of an atom or a few


atoms, put into a void cavity within a continuous dielectric medium. The shape and size of the cavity are


differently defined in the various versions of the continuum models. As a general rule, a cavity should have


a physical meaning, such as that introduced by Onsager, and not be only a mathematical artifice as often


happens in other descriptions of such effects. In particular, the cavity should contain within its boundaries


the largest likely part of the charge distribution. These requirements are in contrast with the description


of the whole system given by any QM level. The electronic charge distribution of an isolated molecule; in


fact, persists to infinity. In a condensed medium the conditions at large distances are less well-defined, but


in any case there will be an overlap with the charge distribution of the medium, not explicitly described in


continuum models but existing in real systems. In continuum models, much attention has been paid to the


portion of medium electric charge outside the boundaries of the cavity; the terms “escaped charge” and


“outlying charge” are often used to indicate this portion of charge. Here we will assume that all of the


charge distribution lies inside the cavity, which in turn has a size not so large as to be in contrast with the


medium exclusion postulate. The optimal size of the cavity has thus been a subject of debate, and several


definitions have been proposed. The adopted definitions are the result of a trade-off between conflicting


physical requirements. The shape of the cavity has also been the object of many proposals. It is


accepted that the cavity shape should reproduce as well as possible the atomic shape. Cavities not


respecting this condition may lead to deformations in the charge distribution after the medium


polarization. Here, once again, there is a trade-off between computational exigencies and the desire for


better accuracy. Quantum mechanical calculations of the molecular surface can give a direct ab initio


definition of the cavity. An accurate description is based on the use of a surface of constant electronic


density. Within this framework, one only needs to specify the isodensity level in the cavity environment.


Photon Cavity


Serge Haroche main research activities have been in quantum optics and quantum information science. He


has made important contributions to Cavity Quantum Electrodynamics CQED, the domain of quantum


optics which studies the behaviour of atoms interacting strongly with the field confined in a high-Q cavity.


An atom-photon system isolated from the outside world by highly reflecting metallic walls realizes a very


simple experimental model which Serge Haroche has used to test fundamental aspects of quantum physics


such as state superposition, entanglement, complementarity and decoherence. Some of these experiments


are actual realizations in the laboratory of the "thought experiments" imagined by the founding fathers of


quantum mechanics. Serge Haroche's main achievements in cavity QED include the observation of single


atom spontaneous emission enhancement in a cavity 1983, the direct monitoring of the decoherence of


mesoscopic superpositions of states so-called Schrodinger cat states 1996 and the quantum-nondemolition


measurement of a single photon 1999. By manipulating atoms and photons in high-Q cavities, he has also


demonstrated many steps of quantum information procedure such as the generation of atom/atom and


atom/photon entanglement 1997, the realization of a photonic memory 1997 and the operation of quantum


logic gates involving photons and atoms as quantum bits known as Qubits 1999.


The basic ingredients of CQED


Two-level systems qubits+quantum harmonic oscillators play an important role in this physics. The qubits


are information carriers and the oscillators act as memories or quantum bus linking the qubits together;


Coupling qubits to oscillators is the domain of Cavity Quantum Electrodynamics CQED.


CQED


Atoms and photons in small cavities behave completely unlike those in free space. Their quirks illustrate


some of the principles of quantum physics and make possible the development of new sensors. Fleeting


spontaneous transitions are ubiquitous in the quantum world. Once they are under way, they seem as


uncontrollable and as irreversible as the explosion of fireworks. Excited atoms, for instance, discharge


their excess energy in the form of photons that escape to infinity at the speed of light. Yet during the past


decade, this inevitability has begun to yield. Atomic physicists have created devices that can slow


spontaneous transitions, halt them, accelerate them or even reverse them entirely. Recent advances in the


fabrication of small superconducting cavities and other microscopic structures as well as novel techniques


for laser manipulation of atoms make such feats possible. By placing an atom in a small box with reflecting


walls that constrain he wavelength of any photons it emits or absorbs- and thus the changes in state that it


might undergo-investigators can cause single atoms to emit photons ahead of schedule, stay in an excited


state indefinitely or block the passage of a laser beam. With further refinement of this technology, cavity


quantum electrodynamics should find use in the generation and precise measurement of electromagnetic


fields consisting of only a handful of photons. Cavity QED processes engender an intimate correlation


between the states of the atom and those of the field, and so their study provides new insights into


quantum aspects of the interaction between light and matter. To understand the interaction between an


excited atom and a cavity, one should keep in mind two kind of physics: the classical and the quantum. The


emission of light by an tom bridges both worlds, light waves are moving oscillations of electric and


magnetic fields. In this respect, they represent a classical event, however light can also be described in


terms of photons, discretely emitted quanta of energy. Sometimes the classical model might be the best


and from time to time the quantum one offers better understanding. When an electron in an atom jumps


from a high energy level to a lower one, the atom emits a photon that carries away the difference in energy


between the two levels. This photon has wavelength of a micron or less, corresponding to a frequency of a


few hundred tetra-hertz and an energy of about one electron volt. Any given excited state has a natural


lifetime similar to the half-life of a radioactive element_that determines the odds that the excited atom will


emit a photon during a given time interval. The probability that an atom will remain excited decreases


along an exponential curve to one half after one tick of the internal clock, one quarter after two ticks an so


on. In classical terms, the outermost electron in an excited atom is the equivalent of a small antenna,


oscillating at frequencies corresponding to the energy of transitions to less excited states, and the photon


is simply the antenna's radiated field. When an atom absorbs light and jumps to a higher energy level, it


acts as a receiving antenna instead. If the antenna is inside a reflecting cavity, however, its behaviour


changes as anyone knows who has tried to listen to a radio broadcast while driving through a tunnel. As


the car and its receiving antenna pass underground, they enter a region where the long wave-lengths of


the radio waves interfere destructively with those that bounce off the steel-reinforced concrete walls of the


tunnel. In fact, the radio waves cannot propagate unless the tunnel walls are separated by more than half a


wave-length. This is the minimal width that permits a standing wave with at least one crest, or field


maximum, to build up-just as the vibration of a violin string reaches a maximum at the ends. What is true


for reception also holds for emission: a confined antenna cannot broadcast at long wavelengths. An excited


atom in a small cavity is precisely such an antenna, albeit a microscopic one. If the cavity is small enough,


the atom will be unable to radiate because the wavelength of the oscillating field it would like to produce


cannot fit within the boundaries. As long as the atom cannot emit a photon, it has to remain in the same


energy level; excited state acquires an infinite lifetime. In 1985 research groups at the University of


Washington and at the Massachusetts Institutes of Technology demonstrated suppressed emission. The


group in seattle inhibited the radiation of a single electron inside an electromagnetic trap, whereas the


MIT group studied excited atoms confined between two metal plates about a quarter of a millimeter apart.


The atoms remained in the same state without radiating as long as they were between the plates.


Millimeter-scale structures are much too wide to alter the behaviour of excited atoms emitting micron or


sub-micron radiation; consequently, the MIT experiments had to work with atoms in special states known


as Rydberg state has almost enough energy to lose an electron completely. Because this outermost electron


is bound only weakly, it can assume any of a great number of closely spaced energy levels, and the photons


it emits while jumping from one to another have wavelengths ranging from a fraction of a millimeter to a


few centimeters. Rydberg atoms are prepared by irradiating ground-state atoms with laser light of


appropriate wavelengths and are widely used in cavity QED experiments. The suppression of spontaneous


emission at an optical frequency requires much smaller cavities.


In 1986 one of us; Haroche, along with other physicists at Yale University, made a micron-wide structure


by stacking two optical flat mirrors separated by extremely thin metal spacers. The workers sent atoms


through, thereby preventing the from radiating for as long as 13 times the normal excited-state lifetime.


Researchers at the University of Rome used similar micron-wide gaps to inhibit emission by excited dye


molecules. The experiments performed on atoms between two flat mirrors have an interesting twist. Such


a structure, with no sidewalls, constrains the wavelength only of photons whose polarization is parallel to


the mirrors. As a result, emission is inhibited only if the atomic dipole antenna oscillates along the plane of


mirrors. The Yale researchers demonstrated these polarization-dependent effects by rotating the atomic


dipole between the mirrors with the help of a magnetic field. When the dipole orientation was tilted with


respect to the mirrors' plane, the excited state lifetime dropped. Suppressed emission also takes place in


solid-state cavities-tiny regions of semiconductor bounded by layers of disparate substances. Solid-state


physicists routinely produce structures of sub-micron dimensions by means of molecular-beam epitaxy, in


which materials are built up one atomic layer at a time. Devices built to take advantage of cavity QED could


engender a new generation of light emitters. These experiments indicate a counter-intuitive phenomenon


that might be called '' no-photon interference''. In short, the cavity prevents an atom fro emitting a photon


because that photon would have interfered destructively with itself had it ever existed; however this


implies that the photon know even before being emitted whether the cavity is the right or wrong size. Part


of this might be due to the odd result of quantum mechanics. A Cavity with no photon is in its lowest


energy state, the so-called ground state, though not empty. The Heisenberg uncertainty sets a lower limit


on the product of the electric and magnetic fields inside the cavity or anywhere else for that matter and


thus prevents them from simultaneously vanishing. This so-called vacuum field exhibits intrinsic


fluctuations at all frequencies, from long radio waves down to visible ultraviolet and gamma radiation and


is a crucial concept in theoretical physics. Indeed, spontaneous emission of a photon by an excited atom is


in a sense induced by vacuum fluctuations. The no-photon interference effect arises because the


fluctuations of the vacuum field, like the oscillations of more actual electromagnetic waves are constrained


by the cavity walls. In a small box, boundary conditions prevent long wavelengths-there can be no vacuum


fluctuations at low frequencies. An excited atom that would ordinarily emit a low-frequency photon cannot


do so, because there are no vacuum fluctuations to simulate its emission by oscillating in phase with it.


Small cavities suppress atomic transitions; slightly larger ones, however, can enhance them. When the size


of a cavity surrounding an excited atom is increased to the point where it matches the wavelength of the


photon that the atom would emit, vacuum-field fluctuations at that wavelength flood the cavity and become


stronger than they could be the case in free space. This state of affairs encourages emissions; the lifetime


of the excited state becomes much shorter. We observed this emission enhancement with Rydberg atoms at


the Ecole Normale Superieure ENS in Paris in one of the first cavity QED experiments back in 1983. If the


resonant cavity has absorbing walls or allows photons to escape, the emission is not different from


spontaneous radiation in free space in its essence_ It just proceeds much faster. If the cavity walls are very


good reflectors and the cavity is closed, however, novel effects occur. These effects, which depend on


intimate long-term interactions between the excited atom and the cavity, are the basis for a series of new


devices that can make sensitive measurements of quantum phenomena. Instead of simply emitting a


photon and going on its way, an excited atom in such a resonant cavity oscillates back and forth between


its excited and unexcited states. The emitted photon remains in the box in the vicinity of the atom and is


promptly reabsorbed. The atom-cavity system oscillates between two states, one consisting of an excited


atom and no photon, and the other of a de-excited atom and a photon trapped in the cavity. The frequency


of this oscillation depends mostly on the transition energy, on the size of the atomic dipole and on the size


of the cavity. This atom-photon exchange has a deep analogue in classical physics; If two identical


pendulums are coupled by a weak spring and one of them is set in motion, the other will soon start


swinging while the former comes to rest. At this point, the former starts swinging again, commencing an


exchange of energy. A state in which one pendulum is excited and the other is at rest is not stationary,


because energy moves continuously from one pendulum to the other. The system does have two steady


states, however; one in which the pendulums swing in phase with each other, and the other in which they


swing alternatively toward and away from one another. The system's oscillation in each of these


eigenmodes differs due to the additional force imposed by the coupling_the pendulums oscillate slower in


phase and faster in out of phase. Furthermore, the magnitude of the frequency difference between the two


eigenmodes is equal to the rate at which the two pendulums exchange their energy in the non-stationary


states. Researchers recently observed this mode splitting in an atom-cavity system. They transmitted a


weak laser through a cavity made of two spherical mirrors while a beam of cesium atoms also passes


through the cavity. The atomic beam was so tenuous that there was at most one atom at a time in the


cavity. Although the cavity was not closed, the rate at which it exchanged photons with each atom exceeded


the rate at which the atoms emitted photons that escaped the cavity. The spacing between the mirrors was


an integral multiple of the wavelength of the transition between the first excited state of cesium and its


ground state. Experimenters varied the wavelength and hence the frequency of the laser and recorded its


transmission across the cavity. When the cavity was empty, the transmission reached a sharp maximum at


the resonant frequency of the cavity. When the resonator contained one atom on average, however, a


symmetrical double peak appeared. The frequency splitting about six mega-hertz marked the rate of


energy exchange between the atom and a single photon in the cavity. This apparatus is extremely sensitive;


when the laser is tuned to the cavity's resonant frequency, the passage of a single atom lowers


transmission significantly. This phenomenon can be used to count atoms in the same way one currently


counts cars or people intercepting an infrared light in front of a photo-detector. The cavity must be as


small as possible because the frequency splitting is proportional to the vacuum-field amplitude, which is


inversely proportional to the square root of the box's volume. At the same time, the mirrors must be very


good reflectors so that the photon remains trapped for at least as long as it takes the atom and cavity to


exchange a photon. Experimenters have been able to achieve longer storage times-as great as several


hundred milliseconds- by means of superconducting niobium cavities cooled to temperatures of about one


kelvin. These cavities are ideal for trapping the photons emitted by Rydberg atoms, which typically range


in wavelength from a few millimeters to a few centimeters. In a recent experiment in our laboratory at


ENS we excited rubidium atoms with lasers and sent them across a superconducting cylindrical cavity


tuned to a transition connecting the excited state to another Rydberg level 68 Gigahertz higher in energy;


we observed a mode splitting of about 100 K-hertz when the cavity contained three or two atoms at the


same time. There is a striking similarity between the single atom-cavity system and a laser-induced. Either


device, which emits photons in the optical and microwave domain, respectively, consists of a tuned cavity


and an atomic medium that can undergo transitions whose wavelength matches the length of the cavity.


When energy is supplied to the medium, the radiation field inside the cavity builds up to a point where all


the excited atoms undergo stimulated emission and give out their photons in phase. Indeed, in 1984


physicists at the Max Planck Institute for quantum optics succeeded in operating a micro-maser containing


an atom. To start up the micro-maser, Rydberg atoms are sent one at a time through a superconducting


cavity. These atoms are prepared in a state whose favored transition matches the resonant frequency of


the cavity. This apparatus is another diversification of the atom-cavity coupled oscillator; if an atom were


to remain inside that, it would exchange a photon with the cavity at some characteristic rate. Instead,


depending on the atom's speed, there is some fixed chance that an atom will exit unchanged and a


complementary chance that it will leave a photon behind. If the cavity remains empty after the first atom,


the next one faces an identical chance of exiting, the cavity in the same state in which it entered. However,


an atom deposits a photon; then the next atom in line encounters sharply altered odds that it will emit


energy. The rate at which atom and field exchange energy depends on the number of photons already


present_ the more photons, the faster the atom is stimulated to exchange additional energy with the field.


Soon the cavity contains two photons, modifying the odds for subsequent emission even further, then


three and so on at a rate that depends at each step on the number of previously deposited photons. In fact,


the photon number does not increase without limit as atoms keep passing the resonator. Because the walls


are not perfect reflectors, the more photons there are, the greater becomes the chance that one of them


will be absorbed. About hundred thousand atoms per second can come through a typical micro-maser, each


remaining perhaps 10 microseconds, meanwhile the photon lifetime within the cavity is about 10


milliseconds. Consequently, such a device running in steady state contains about 1000 microwave photons,


Each of them carries an energy of bout .0001 electron-volt. Though it would be difficult to measure such a


tiny field directly, the atoms going through the resonator provide a very simple way to monitor the maser.


The transition rate from one Rydberg state to the other depends upon the photon number in the cavity,


and experiments need only measure the fraction of atoms leaving the maser in each state. The populations


of the two levels can be determined by ionizing the atoms in two small detectors, each consisting of plates


with an electric field across them. The first detector operates at a low field to ionize atoms in the higherenergy


state; the second operates at a slightly higher field to ionize atoms in the lower-state, i.e. those that


have left a photon behind. With its tiny radiation output and it drastic operational requirements, the


micro-maser may or may not be a machine that could be taken off a shelf and switched on by pushing a


knob. It is an ideal system to illustrate and test some of the principles of quantum physics. Intriguing


variation of the micro-maser is the two-photon maser source. Such a device was operated for the first time


several years ago by our group; Atoms went through a cavity tuned to half the frequency of a transition


between two Rydberg levels. Under the influence of the cavity radiation, each atom was stimulated to emit


a pair of identical photons, each bringing half the energy required for the atomic transition, The maser


field built up as a result of the emission of successive photon pairs. The presence of an intermediate energy


level near the midpoint between the initial and the final levels of the transition helps the two-photon


procedure along. Loosely speaking, an atom goes from its initial level to its final one via a virtual transition


during which it jumps down to the middle level while emitting the first photon; it then jumps down again


while emitting the second photon. The intermediate step is virtual because the energy of the emitted


photons, whose frequency is set by the cavity, does not match the energy differences between the


intermediate level and either of its neighbors. How can such a paradoxical situation exist? The micromaser


cavity makes two photon operation possible in two ways; 1) It inhibits single-photon transitions that


are not resonant with the cavity 2) It strongly enhances the emission of photon pairs. Without the cavity


Rydberg atoms in the upper level would radiate a single photon and jump down to the intermediate level.


This procedure would deplete the upper level before two photon emission could build up. Though the basic


principle of a two photon micro-maser is the same as that of its simple one photon cousin, the way in


which it starts up and operates differ significantly. A strong fluctuation, corresponding to the unlikely


emission of several photon pairs in close succession might be required to trigger the system; as a result,


the field builds up after a period of lethargy. Once this fluctuation has occurred the field in the cavity is


relatively strong and stimulates emission by subsequent atoms causing the device to reach full power


rapidly. A two-photon laser system recently developed at Oregon state University operates along a


different scheme but displays the same metastable behaviour. The success of micro-masers and other


similar devices has prompted cavity QED researchers to conceive new experiments, some of which might


have been dismissed as pure science fiction only a few years ago. Perhaps the most remarkable of these as


yet hypothetical experiments are those that deal with the forces experienced by an atom in a cavity


containing only a vacuum or a small field made of a few photons. The first thought experiment starts with


a single atom and an empty cavity tuned to a transition between two of the atom's states. This coupled


oscillator system has two non-stationary states; One corresponds to an excited atom in an empty cavity;


the other to a de-excited atom with one photon. The system also has two stationary states, obtained by


addition or subtraction of the non-stationary ones_addition corresponds to the in-phase oscillation mode


of the two pendulum model and subtraction corresponds to the out of phase mode; these stationary states


differ in energy by a factor equal to Planck's constant; h, times the exchange frequency between the atom


and the field.


By Serge Haroche and Jean-Michel Raimond


Qubits and Oscillators_Description of a qubit or spin 1/2


A pure state of a qubit |0>,|1> is parametrized by two polar angles θ,φ and is represented by a point on the


Bloch sphere. The Bloch vector components are the expectation values of the Pauli operators. The qubit


state is determined by performing averages on an ensemble of realizations. Coupling qubits to oscillators is


an important ingredient in quantum information.


Coherent state


Coupling field mode to classical source generates coherent state whose amplitude increases linearly with


time. A classic antenna would be located at r=0. λ would be a constant proportional to current amplitude in


antenna. The rotating wave approximation keeping time independent. For the Field evolution in cavity


starting from vacuum at t=0 we use Glauber formula. Expanding in power series, we get the field in Fock


state basis ωfield |t>, Coupling field mode to classical source generates coherent state whose amplitude


increases linearly with time.


Density operator for a field mode


ρ=ωfield ωfield /pure state


ρ=Σpi |ω(i(field ω(i(field /mixed state


Matrix elements of ρ defined as the wave function of the field for the pure state and the sum


of the complex wave function with an imaginary term for the mixed state; can be discrete in Fock state


basis or continuous in quadrature basis. Going from one representation to the other is easy knowing the


amplitudes x|n> expressing the oscillator energy eigenstates.


Bayes law or projection postulate


Comes from the work by the Reverend Thomas Bayes is the probability to detect the atom in state j (0 or 1)


provided they are n photons in cavity would be the reciprocal probability provided that the atom has been


detected in j is given by Bayes law. Within normalization, the inferred photon number probability is the a


priori one multiplied by the Ramsey fringe function. The same result is obtained by applying the projection


postulate to the qubit measurement.


Bayes law/Maximum Likelihood estimator


A natural choice for the estimator is maximised by bayes combined with some assumption of prior


knowledge about the estimator θ before the approximation. The joint probability for finding values of


couple estimators p(x,θ can be expressed in terms of the a priori probabilities over each of them, i.e. px


and pθ, If nothing is a priori known about one of them,let's say; θ, we should assume a flat pθ probability


distribution leading to probabilities of each of them over their intgrated sum; p(θ/x= p(x/θ) / Integ.


p(x/θ)dθ. The probability distribution of one of the estimators;e.g.,θ after result of the other; e.g., x has


been found is thus given by the likelihood function p(x/θ.


Photon count in cavity


To count up to nm photons we can either choose φ0=π/nm+1 and use one detection phase φr


corresponding for instance to the detection of σx and σy. After detecting p qubits in state j=0 and N-p in


state j=1 the inferred photon number distribution has become the distribution maximum is obtained by


computing the derivative of p(n|p;N-p versus n. The derivatives cancels for X=p/N and the photon number


nmax satisfies. To estimate the width of the inferred photon number distribution we compute its second


derivative at X=p/N and we get the Taylor expansion of the photon number distribution around its


maximum.


Serge Haroche


Fisher information & Cramer-Rao bound


The known probability law for the estimators depends upon an unknown parameter θ of one of the


estimators which might also be a vector. For reasons made clear the probability function is called the


likelihood of θ of one estimator corresponding to result of the other. The measurement of probability


brings an information about θ that we want to quantify. We are going to call estimator θx a function which


associates to each x result an estimation of the true θ. The variance of θx averaged over measurements


defines the estimator precision. This variance has a lower limit independent of the estimator called the


cramer-Rao bound which is in turn related to a function of the likelihood called the Fisher Information.


Measuring a random variable X yields a result x. The known probability law p(x/θ of X depends upon an


unknown parameter θ which can also be a vector. For reasons made clear the function p(x/θ is called the


likelihood of θ corresponding to result x. The measurement of X brings an information about θ that we


want to quantify. We are going to call estimator θx a function which associates to each x result an


estimation of the true θ. The variance of θx averaged over measurements defines the estimator precision.


This variance has a lower limit independent of the estimator called the cramer-Rao bound which is in turn


related to a function of the likelihood called the Fisher Information. First we consider unbiased estimators,


whose average over a large number of measurements yields the true value of θ. We then use the identity


dp/dθ=p dLogp/dθ


Introduction to superconducting qubits


The physics of superconducting qubits has made tremendous progresses during the last years. Circuits


made of Josephson junctions have been turned into artificial atoms which can be manipulated and


measured by methods similar to the ones previously developed in ion trap or CQED physics. Here we are


going to focus on one aspect of this physics, namely the use of Josephson qubits to prepare and reconstruct


non classical fields of radio-frequency resonators/circuit QED and we will compare this physics with CQED.


Ramsey interferometer


Ramsey interferometer with the two cavities R1 et R2 sandwiching the cavity C containing the field to be


measured. The atom with two levels g and e qubit in states j=0 and j=1 respectively, prepared in e, is


submitted to classic pulses in R1 and R2, the second having φr phase difference with the first. The


probabilities to detect the atom in g/j=0 and e/j=1 when C is empty are Pj=cos2(φr-jπ(/2 The Pj


probabilities oscillate between 0 and 1 with opposite phases when φr is swept. Probabilities Pe or Pg=1-Pe


for finding atom in e or g oscillate versus φ. The phase of the atomic fringes and their amplitude depend


upon the state of field in C, which affect in different ways the probability amplitudes associated to states e


and g. If C is non-resonant with the atomic transition and contains n photons, the atomic dipole undergoes


in C a phase shift θ. The fringes are shifted and the Pj probabilities become Pj=cos2(φr+θ-jπ(/2. Detecting


the Ramsey signal with phase φr amounts to choosing a detection direction of the qubit Bloch vector in the


equatorial plane of the Bloch sphere. The phase-shift per photon is set to distinguish photon numbers from


0 to 7, each one corresponding to a different direction of the Bloch vector. Ramsey pulse rotates Bloch


vector by π/2 around vx. Qubit phase shift φc during C crossing amounts to Bloch vector rotation around


vz. Second Ramsey pulse exercise π/2 rotation around vu whose direction depends on R2-R1 relative phase


φr.


Useful formula


For a Pauli operator exp(-iφδu=cosφ lc- i sinφδu; hence the rotation induced by Ramsey interferometer


would be R=exp(-iπ/4 δu( exp(-iφ/2 δz( exp(-iπ/4 δx; The part two term two of the equation is the cavity


phase shift. Coupling a qubit to a quantized field mode: The Jaynes-Cummings Hamiltonian


Matter/ Classic current Radiation/ Quantum field mode Semi-classic


Quantum/qubit Quantum field mode Coherent states Matter / Quantum/qubit Radiation/


Classic field Qubit rotations full quantum Quantum/qubit Quantum field mode Cavity QED


Josephson junction


A Josephson junction is known with two pieces of superconducting metal separated by a few nanometer


wide insulating barrier through which Cooper pairs tunnel. When the system isolated, we can define the


number of Cooper pairs and the quantum phases of the Cooper pair wave functions on the two sides of the


JJ. The charge and phase differences are the essential parameters describing the properties of the JJ.


B.Josephson has shown in 1962 that a current IJ=I0 sinσ with σ defined as quantum phase of the Cooper


pair wave functions.


Quntum optics in cavity


One of the most subtle problems in the physics of this century is the relation between the macroscopic


world, described by classical physics, and the microscopic world, ruled by the laws of quantum physics.


Among the several questions involved in the quantum-classical transition, one stands out in a striking way.


As pointed out by Einstein in a letter to Max Born in 1954 ,it concerns the in-existence at the classical level


of the majority of states allowed by quantum mechanics, namely coherent superpositions of classical


distinct states. Indeed, while in the quantum world one frequently comes across coherent superpositions of


states like in Young’s two-slit interference experiment, in which each photon is considered to be in a


coherent superposition of two wave-packets ,centered around the classical paths which stem out of each


slit, one does not see macroscopic objects in coherent superpositions of two distinct classical states ,like a


stone which could be at two places at the same time. There is an important difference between a state of


this kind and one which would involve just a classical alternative: the existence of quantum coherence


between the two local states would allow in principle the realization of an interference experiment,


complementary to the simple observation of the position of the stone. We know all this already from


Young’s experiment: the observation of the photon path that is, a measurement which is able to


distinguish through which slit the photon has passed unavoidably destroys the interference fringes. If one


assumes that the usual rules of quantum dynamics are valid up to the macroscopic level, then the existence


of quantum interference at the microscopic level necessarily implies that the same phenomenon should


occur between distinguishable macroscopic states. This was emphasized by Schrodinger in his famous cat


paradox. An important role is played by this fact also in quantum measurement theory, as pointed out by




Von Neumann. Indeed, let us assume for instance that a microscopic two-level system (states |+ and |－)





interacts with a macroscopic measuring apparatus,in such a way that the pointer of the apparatus points to


a different and classical distinguishable position for each of the two states, that is, the interaction




transforms the joint atom-apparatus initial state into |+> |+>' |↑ >, |－> |－>' |↑ >. The linearity of





quantum mechanics implies that, if the quantum system is prepared in a coherent superposition of the two




states, say |ψ}=|+}+|－}/√2, the final state of the complete system should be a coherent superposition of


two correlated states, each of which corresponding to a different position of the pointer: (1/√2)(|+>+|－>)


|↑ > (1/√2)(|+>' |↑ >+|－>' |↑ >) = (1/√2)(|↑>' + |↑ >') (1), where in the last step it was assumed that





the two-level system is incorporated into the measurement apparatus after their interaction for instance,


an atom which gets stuck to the detector. One gets, therefore, as a result of the interaction between the


microscopic and the macroscopic system, a coherent superposition of two classical distinct states of the


macroscopic apparatus. This is indeed the situation in Schrodinger’s cat paradox: the cat can be viewed as


a measuring apparatus of the state of a decaying atom, the state of life or death of the cat being equivalent


to the two positions of the pointer. This would imply that one should be able in principle to get


interference between the two states of the pointer: it is precisely the lack of evidence of such phenomena in


the macroscopic world which motivated Einstein’s concern. Faced with this problem,Von Neumann


introduced through his collapse postulate two distinct types of evolution in quantum mechanics: the


deterministic and unitary evolution associated to the Schrodinger equation,which describes the


establishment of a correlation between states of the microscopic system being measured and


distinguishable classical states for instance, distinct positions of a pointer of the macroscopic measurement


apparatus; and the probabilistic and irreversible process associated with measurement, which transforms


the correlated state into a statistical mixture. This separation of the whole process into two steps has been


the object of much debate; indeed, it would not only imply


an intrinsic limitation of quantum mechanics to deal with classical objects, but it would also pose the


problem of drawing the line between the microscopic and the macroscopic world. Several possibilities have


been explored as solutions to this paradox, including the proposal that a small non-linear term in the


Schrodinger equation, although unnoticeable for microscopic phenomena, could eliminate the coherence


between macroscopic states, thus transforming the quantum superpositions into statistical mixtures. The


non-observability of the coherence between the two positions of the pointer has been attributed both to the


lack of non-local observables with matrix elements between the two corresponding states as well as to the


fast decoherence due to dissipation. This last approach has been emphasized in recent years: decoherence


follows from the irreversible coupling of the observed system to a reservoir. In this process, the quantum


superposition is turned into a statistical mixture, for which all the information on the system can be


described in classical terms, so our usual perception of the world is recovered. Furthermore, for


macroscopic superpositions quantum coherence decays much faster than the physical observables of the


system, its decay time being given by the dissipation time divided by a dimensionless number measuring


the separation between the two parts. The statement that these two parts are separated in macroscopic


terms implies that this separation is an extremely large number. Such is the case for biological systems like


cats made of huge number of molecules. In the simple case mentioned by Einstein,of a particle split into


two spatial separated wave packets by a distanced, the dimensionless measure of the separation is


[d/λdB[2, where λdB is the particle de Broglie wavelength. For a particle with mass equal to1g at a


temperature of 300K, and d=1 cm, this number is about 10^40, and the decoherence is for all purposes


instantaneous. This would provide an answer to Einstein’s concern: decoherence of macroscopic states


would be too fast to be observed. The study of the interaction between atoms and electromagnetic fields in


cavities can help us understand some aspects of this problem. In fact, many recent contributions in the


field of quantum optics have led not only to the investigation of the subtle frontier between the quantum


and the classical world, but also of hitherto unsuspected quantum mechanical processes like teleportation.


Research on quantum optics is therefore intimately entangled with fundamental problems of quantum


mechanics. The whole area of cavity quantum electrodynamics is a very recent one. It concerns the


interactions between atoms and discrete modes of the electromagnetic field in a cavity, under conditions


such that losses due to dissipation and atomic spontaneous emission are very small. Usually, one deals


with atomic beams crossing cavities with a high quality factor Q defined as the product of the angular


frequency of the mode and its lifetime, Q=ωτ. The atoms, prepared in special states and detected after


interacting with the field, serve two purposes: they are used to manipulate the field in the cavity, so as to


produce the desired states, and also to measure the field. Several factors contributed to the development of


this area. The production of superconducting Niobium cavities, with extremely high quality factors, up to


the order of 10^10, allows one to keep a photon in the cavity for a time of the order of one second. New


techniques of atomic excitation alkaline atoms, like Rubidium and Cesium, are frequently used for this


purpose to highly excited levels principal quantum numbers of the order of 50, and with maximum angular




momentum l=n－1/ the so-called planetary Rydberg atoms – have led to the production of atomic beams





that interact strongly even with very weak fields, of the order of one photon, due to the large magnitude of


the relevant electric dipoles. Besides,the lifetime of these states is large–of the order of the millisecond–


which might be understood semi-classical, from the correspondence principle which should be in place for


n 50): the electron is always very far away from the nucleus, and therefore its acceleration would be


small,implying weak radiation and a long lifetime. Looking into the problem of the classical limit of


quantum mechanics will indeed provide us with a useful thread, a leitmotif which will lead us to many


important techniques of quantum optics.


Coherent states


We have seen that the average value of the electric field operator vanishes in a Fock state. Therefore, we


cannot associate Fock states to classical fields with amplitude different from zero, and well-defined phase.


We should look for quasi-classical field states. Provided that the average value of the electromagnetic field


in these states, which we denote by |α>, coincides with the classical expression for an electromagnetic field


with complex amplitude α: <α|E (r )|α>=√ ω/V [u(r ) ε α + c.c.


The states |n> are the so-called Fock states, and have a well-defined number of photons. The state


corresponding to n=0 is the vacuum state. It is easy to show from the above relations that |n=a'n/ √n! |0>.


The electric field is expressed in terms of the cancel out and create operators by E(r)=Eω[au (r ) ε +a'u (r )


[; (2 , where u(r) is a function which describes the spatial dependence of the field mode, is the


polarization vector, and Ew= ω/V is the field per photon. Here V=Integ.|u(r)|2 d^3r, is the effective


volume of the mode, defined so that the expectation value of the electromagnetic energy in the vacuum




state, 1/4π Integ.<0| [E(r )[2 |0> d^3r, is equal to the zero → pointenergy ω/2.


A special role will be played in the following by the phase displacement operator: U(θ)=exp(－iθN). (3





The expectation value of the electromagnetic energy in the state |α> coincides with the classical expression


for this energy, expressed in terms of the complex amplitude α, at least in the limit when |α|>>1. It is easy


to show that the classical energy, when the electric field expressed in terms of α, would be


Ec= ω |α|2 (4


<α|a|α>=α. (5


Provided that the expectation value of the electromagnetic energy in the state |α> coincides with the


classical expression for this energy, expressed in terms of the complex amplitude α, at least in the limit


when 1<< α.


Luiz Davidovich


Quantum Particle As Seen In Light Scattering


Spatial motion of free quantum particles is described by the Schrodinger wave equation. Typical solutions


of this equation show an unlimited growth of the wave packet width. If the particle is illuminated then the


scattered light will show the trajectory of the quantum particle. If a single photon of incoming wave


number has scattered with the final wave number then the scatterer’s wavefunction obtains a unitary


factor. where the scattering angle θ between incoming wave number and the final wave number, resp., is


distributed according to the modulus square of the scattering amplitude. These processes interrupt the


otherwise deterministic evolution of the wavefunction. We shall assume a certain diffuse light of different


wave number. Then the scattering processes will occur randomly at a given rate. To get an easy insight


into the resulting stochastic process, we shall assume that λ= 2π/k is much bigger than the wave packet


width and, furthermore, that the repetition frequency of scatterings is big as compared to the time scale of


the free dynamics of the particle. What follows will describe the dynamics of the illuminated particle. The


particle’s motion is influenced by the random force which is a certain stationary white noise. Hence, the


linear stochastic might not be suitable to represent the experienced trajectory of the quantum particle. The


jumps of the wavefunction assumes a particular classification of the photon states. Indeed, the final states


as well as the initial ones have been classified according to their momenta. Obviously, trajectories can not


be observed via the scattering angles of the photons. They are only observed by identifying the position


where the scattered light has emerged. One might think of a lense inserted on the path of each scattered


photon, making an optical map of the scatterer particle. Here we introduce the mathematical model of the


above set up by the special Fourier transform of the scattering amplitude to present the influence of a


single scattering process on the particle’s wavefunction. This jump differs very much from the previous


one in a sense that is nonlinear.;In the same approximation that we assumed for the previous process, this


nonlinear one leads to the following counterpart of a henomenological equation. To make a formal


comparison of this last procedure to the ordinary Schrodinger, The main difference would be the lack of


the imaginary factor in the second term as if the random force had become pure imaginary. The third term


then comes in just to restore normalization of the wave function. To the author’s knowledge, this


imaginary random force has no direct physical interpretation but that it has come out from the first and


the last procedure in the given approximation.


Lajos Diosi


Transition Probability


Transition probability per second is the probability that a photon state is occupied, the number of the


terms of the equation should be the probability per second that a photon in that state will be absorbed. The


trans. prob. would be the probability that a photon of frequency ω travelled in direction θ,φ will be


absorbed. The dependence on the photon direction is contained in the matrix element Uℓ. If P/ω,θ,φ


dωdΩ were the probability that a photon is present with frequency ω to ω+dω and in solid angle dΩ about


the direction θ,φ and the probability of absorption of any photon travel this direction were desired, it


would be necessary to integrate over all frequencies. When T is large, the transition factor has an


appreciable value for ω near EℓEk, and P/ω,θ,φ will be constant over the small range in ω which


contributes to the integral so that it should be taken out of integral. It is evident that there is a relation


between the probability of spontaneous emission, with accompanying atomic transition from state ℓto


state k, and the absorption of a photon with accompanying atomic transition from k to state ℓ though the


initial and final states are reversed. This is correct even when there is a possibility of more than one


photon per state provided n/ω,θ,phi is taken as the mean number of photons per state. If the initial state


consists of two photons in the same photon state, it would not be possible to distinguish them out.
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Before a phase-space can become imbued with reality, its elements and subsets should be correlated in


some way with experimental propositions which are subsets of different observation-spaces. Moreover,


this must be so done that set-theoretical inclusion which is the analogue of logical implication is preserved.


There is an obvious way to do this in dynamical systems of the classical type. One can measure position


and its first time derivative velocity―and hence momentum―explicitly, and so establish a one-one


correspondence which preserves inclusion between subsets of phase-space and subsets of a suitable


observation-space. Trying to characterize more precisely the space of trajectories that contribute to the


path integral, the term that connects the different times in the integral set generates oscillations that


suppress trajectories that are not regular enough. The typical size of the difference for trajectories that


contribute is given by the typical values of Pk. For instance if the Hamiltonian is quadratic in p, the values


of pk in the integral set are of the order 1/ξ. Considering the example of a Hamiltonian of the form


p2/2m+Vq, we might notice that if for instance Vq increases as q2N, the set of values of qk are such that ξ


q2N would be of order one and thus the difference Pk- Pk-1 should be of 1/ξ2N. The formal canonial


invariance of the path integral might be true for a limited group of transformations. Indeed, could be


shown that in the one-dimensional case, a Hamiltonian H with one degree of freedom could be




transformed into a free one: pq'_H PQ'-p2/2m The path integral in phase space ↦ in general is more





difficult to handle than a simpler integral in position space.


Quantum Mechanics


In western view of quantum mechanics focus is too much on analysis and tends to lead to fragmentation,


what is meant by fragmentation is not just division or distinction, because parts and the whole are


correlative concepts, part is a part because it is part of a whole like a machine or a watch, the fragment is


something you see when you break up the whole, so if you smash the watch you get the fragments, the


western worldview aims at getting the true parts of the universe but in some ways perhaps it gets the


fragments, to some extent. So if you break it up into fragments then you have it confused, you are going to


treat that as if it is separate or not, and also you are going to unite what's in fragment, when it's not


united, so it leads to confusion. you get confused about the part and the whole, because you take the


fragment as an independent whole. The observer is the intrinsic part of the whole, that's what quantum


mechanics teaching us, that the observing instrument is just as much part of the whole, and therefore


because of the possibilities of these non-local interactions in quantum mechanics when an observation is


made the two systems are not really distinct, therefore they participate in each other and therefore you can


not get an ambiguous meaning to the measurement. The same happens between human beings, If


somebody tries to measure somebody else trying talk to him there is a mutual change which make it


impossible to get unambiguous attribution of quality; we are participating together, that's what happens


in quantum mechanical observation. In 1952 I developed an interpretation, I said that the electron is a


particle for example, then it has a quantum field represented by its wave function and this field and the


particle are together, so it is a new kind of field, We know in classic view we have different kind of field


like electric, magnetic, for example, the electromagnetic fields makes radio waves radiating through space,


but the quantum field is different, it has some similarities but it's different because the effect of quantum


field depends only on the form and not on the intensity. The quantum field will be capable of sometimes of


spreading out and the electron at far away could move with the same energy as if it were close, this would


be a kind of explanation of this discrete quantum process. So I have a field that its effect doesn't drop off,


The field might drop off but its effect does not, the effect depends only on the form, not on the intensity, it


is very common but we often don't pay attention to it, If you take for instance a radio wave, its effect falls


up, now imagine a ship guided by a radar or automatic pilot the guidance doesn't depend on the intensity


of the wave, it depends on the form which we may say carries information, the word information has the


two words, "To put form In". So it is like if you have a TV set and you go far away from the antenna or the


place where they put out the broadcast, it doesn't mean that you don't get the broadcast, you just need a


receiver; a Sensitive receiver. As long as it receives it is the same program, what happens is that the form


of radio wave puts form into the current flowing into the receiver, the energy comes from the receiver not


from the radio wave. The radio wave is not pushing the ship around in a mechanical sense, the ship is


moving on its own term and responding with the form, so the radio wave is guided and form giving shape


to its motion. The form of the DNA determines its character RNA and determines the making of proteins,


In human experience we observe the same phenomena : people don't push each other around except if they


are violent, they depend on the form to communicate and people move around because of that, So this is


the most common form of experience and the mechanical business of pushing and pulling here is more


limited. Perhaps this form is fundamental and the electron respond with this form, this not only explains


the interference but also why electrons act like waves, and explains the non-local business and so on, and


explains the superconductivity as the electrons moving by the common pool of information just as the


ballet dancers do. That means we have quite a different principle of explanation because this wave function


which operates through form is closer to life and mind, the basic quality of mind is that it responds to form


and not to the substance. One might think from what has been said that the physical universe is more


about information rather than substance, One might say both, but information contributes in a


fundamental way to the quality of the substance. We can discuss the mathematics given the probability


that certain results would be obtained, this gives an intelligible explanation; requires you to accept new


principles and you would have to say this wave field will perhaps have a more substantial basis which we


don't know that would carry in. You might regard it as a kind of speculation which is not tied to


experimental facts perhaps, but it is important to make it intelligible, also to show the connection between


this and the whole range of experiences. This view may or may not give a same experimental predictions as


the classical view, but the experimental prediction is only one of the functions of the theory, it enables you


to understand whats going on to make it intelligible, When the general audience is presented with this


view toward the universe which is often based on the interpretation of the quantum mechanics, they might


acknowledge that this is sort of a minority kind of interpretation, that's because other interpretations that


are known to them are not intelligible, its so abstract and difficult that they cant really understand,


however this interpretation makes everything more accessible to more people and perhaps shows the


connection of different fields. The act of information is quite far into classical physics, the thing makes


classical physics is not just the form of newtons law, but what you say about the forces, if you say that they


are this character of information it changes, but the entirely non-classical concept which is the activity of


information contributes to the property of substance in its foundation. Our concern should be whether we


take the wave function as the whole description or not; I have this particle, and the wave function for it


would be as the field of information that acts on the particle, the wave function which is a mathematical


representation of the field of information, in the case of one particle it's like a wave but it's a wave that


acts according to its form and not according to its intensity. We might regard the wave function as a part of


reality, and this might be the case, we could make an analogy to society, one would say that the society


consist of people and interrelated but another point of view might say they are interrelated but through


information exchange, that's crucial, without that society collapse. If you compare it to society you can


have every individual follow his own pool of information or can have people trying to move together within


a common pool, I think it's essential to have coherence and harmony that the whole society could move


together with this common pool of information which is established by exchange and dialogue.


The general trend hasn't got very far toward that direction because everything has been divided into


nations and religions and other kinds of groups which behave as if they are independent where they are


not, people have to give all that up and they might find it hard, to deal with the ecological problem I think


people have to give the great deal of that up. One might think I am moving my emphasis from persons,


individuals or the divided parts to the information flow or the information field of society; that might be


right in some sense but I say At the same time each individual contains the whole information field of


society in his own way; it's in his mind, it's in his brain, Each individual in him or her has the whole


human experience or knowledge; What I'm trying to say is that individuals come from society but


individuals together form society, Now we have so many individuals each with his own view, come into


clash, they have gotta be able to talk about it, to have dialogue and to entertain each others view to look at


it calmly that each one can look at all the views, so each individual holds all the views and holds the whole


and he doesn't necessarily agree with them but out of that what he merge with is the common pool of


information which guides the society. Quantum mechanics gives the probability of an experimental result,


the decay of an atomic nucleus and the fact that it decays at one moment and not another cannot be


properly pictured within the theory; however, It can enable you to predict the results of various


experiments. Physics has changed from its earlier form, when it tried to explain things and give some


physical picture; Now the essence is regarded as mathematical, It's felt the truth is in the formulas, Now


they may find an algorithm by which they explain a wider range of experimental results. In the Fifties,


when I sent my book around to various physicists-including Bohr, Einstein, and Pauli--Bohr didn't answer,


Pauli liked it. Einstein sent me a message that he'd like to talk with me. When we met he said the book had


done about as well as you could do with quantum mechanics, however he was not convinced it was


satisfactory enough to be considered as a theory, His objection was not that it was statistical, He felt it was


a kind of abstraction; quantum mechanics got correct results but left out much that would have made it


intelligible. I came up with the causal interpretation, that the electron is a particle, but it also has a field


around it. The particle is never separated from that field, and the field affects the movement of the particle


in certain ways. Einstein liked it, however, the interpretation had this notion of action at a distance:


Things that are far away from each other profoundly affect each other; He believed in local action, I didn't


come back to this implicate order until the Sixties, when I got interested in notions of order. I realized then


the problem is that coordinates are still the basic order in physics, whereas everything else has changed.


When it comes to enfoldment, Everybody has seen an image of You fold up a sheet of paper, turn it into a


small packet, make cuts in it, and then unfold it into a pattern, The parts that were close in the cuts unfold


to be far, This is like what happens in a hologram. Enfoldment is really very common in our experience. All


the light in this room comes in so that the entire room is in effect folded into each part. If your eye looks,


the light will be then unfolded by your eye and brain. As you look through a telescope or a camera, the


whole universe of space and time is enfolded into each part, and that is unfolded to the eye. With an oldfashioned


television set that's not adjusted properly, the image enfolds into the screen and then can be


unfolded by adjustment. To map the coordinates and order tie in with enfoldment; it doesn't have to be


necessarily straight lines. They are a way of mapping space and time, Since space-time may be curved, the


lines may be curved as well. It became clear that each general notion of the world contains within it a


specific idea of order. The ancient Greeks had the idea of an increasing perfection from the earth to the


heavens. Modern physics contains the idea of successive positions of bodies of matter and the constraints


of forces that act on these bodies. The order of perfection investigated by the ancient Greeks is now


considered irrelevant. The most radical change in the notion of order since Isaac Newton came with


quantum mechanics. The quantum-mechanical idea of order contradicts coordinate order because


Heisenberg's uncertainty made a detailed ordering of space and time unlikely. When you apply quantum


theory to general relativity, at very short distances like ten to the minus thirty-three centimeters, the


notion of the order of space and time breaks down. To replace that with some other sense of order First


you have to ask what we mean by order, Everybody has some tacit notion of it, but order itself is


impossible to define, Yet it can be illustrated; In a photograph any part of an object is imaged into a point,


This point-to-point correspondence emphasizes the notion of point as fundamental in sense of order,


Cameras now photograph things too big or too small, too fast or too slow to be seen by the naked eye. So


our image is the lens, the apparatus suggesting the point, The point in turn suggests electrons and


particles And the track of particles on the photograph. Now what instrument would illustrate wholeness?


Perhaps the holograph; Waves from the whole object come into each part of the hologram; This makes the


hologram a kind of knowledge of the whole object. If you examine it with a very narrow beam of laser light,


it's as if you were looking through a window the size of that laser beam. If you expand the beam, it's as


though you are looking through a broader window that sees the object more precisely and from more


angles, But you are always getting information about the whole object, no matter how much or little of it


you take. But let's put aside the hologram because that's only a static record, Returning to the actual


situation, we have a constant dynamic pattern of waves coming off an object and interfering with the


original wave, Within that pattern of movement, many objects are enfolded in each region of space and


time. Classical physics says that reality is indeed little particles that separate the world into its


independent elements, Now I'm proposing the reverse, that the fundamental reality is the enfoldment and


unfoldment, and these particles are abstractions from that. We could picture the electron not as a particle


that exists continuously but as something coming in and going out and then coming in again. If these


various condensations are close together, they approximate a track; The electron itself can never be


separated from the whole of space, which is its ground. About the time I was looking into these questions,


a BBC science program showed a device that illustrates these things very well, It consists of two concentric


glass cylinders, Between them is a viscous fluid, such as glycerin, If a drop of insoluble ink is placed in the


glycerin and the outer cylinder is turned slowly, the drop of dye will be drawn out into a thread, Eventually


the thread gets so diffused it cannot be seen, At that moment there seems to be no order present at all; Yet


if you slowly turn the cylinder backward, the glycerin draws back into its original form, and suddenly the


ink drop is visible again, The ink had been enfolded into the glycerin, and it was unfolded again by the


reverse turning. Suppose you put a drop of dye in the cylinder and turn it a few times, then put another


drop in the same place and turn it. When you turn the cylinder back, wouldn't you get a kind of oscillation?


Yes, you would get a movement in and out, We could put in one drop of dye and turn it and then put in


another drop of dye at a slightly different place, and so on; The first and second droplets are folded a


different number of times, If we keep this up and then turn the cylinder backward, the drops continually


appear and disappear, So it would look as if a particle were crossing the space, but in fact it's always the


whole system that's involved. We can discuss the movement of all matter in terms of this folding and


unfolding, which I call the holo-movement which may lie outside of time as we ordinarily know it. If the


universe began with the Big Bang and there are black holes, then we must reach places where the notion of


time and space breaks down. Within the singularity none of the laws as we know them apply, There are no


particles; they are all disintegrated, There is no space and no time, Whatever is, would be beyond any


concept we have at present. The present physics implies that the total conceptual basis of physics must be


regarded as completely inadequate. The grand unification of the four forces of the universe could be


nothing but an abstraction in the face of some further unknown. I propose something like this: Imagine an


infinite sea of energy filling empty space, with waves moving around in there, occasionally coming


together and producing an intense pulse. Let's say one particular pulse comes together and expands,


creating our universe of space-time and matter, But there could well be other such pulses; To us, that pulse


looks like a big bang; In a greater context, it's a little ripple. Everything emerges by unfoldment from the


holo-movement, then enfolds back into the implicate order; I call the enfolding process "implicating," and


the unfolding "explicating." The implicate and explicate together are a flowing, undivided wholeness,


Every part of the universe is related to every other part but in different degrees. There are two


experiences: One is movement in relation to other things; the other is the sense of flow The movement of


meaning is the sense of flow, even in moving through space, there is a movement of meaning. In a moving


picture, with twenty-four frames per second, one frame follows another, moving from the eye through the


optic nerve, into the brain. The experience of several frames together gives you the sense of flow; This is a


direct experience of the implicate order. In classical mechanics, movement or velocity is defined as the


relation between the position now and the position a short time ago, What was a short time ago is gone, so


you relate what is to what is not, This isn't a logical concept; In the implicate order you are relating


different frames that are co-present in consciousness, A moment contains flow or movement, The moment


may be long or short, as measured in time; So a moment enfolds all the past, but the recent past is


enfolded more strongly, At any given moment we feel the presence of all the past and also the anticipated


future, It's all present and active. I could use the example of the cylinder again; Let's say we enfold one


droplet h times, Then we put another droplet in and enfold it N times, The relationship between the


droplets remains the same no matter how thoroughly they are enfolded, So as you unfold, you will get back


the original relationship. Imagine if we take four or five droplets--all highly enfolded--the relationship


between them is still there in a very subtle way, even though it is not in space and not in time. But, of


course, it can be transformed into space and time by turning the cylinder. The best metaphor might involve


memory; We remember a great many events, which are all present together, Their succession is in that


momentary memory, We don't have to run through them all to reproduce that time succession since we


already have the succession. Much of our experience suggests that the implicate order is natural for


understanding; When you are talking to somebody, your whole intention to speak enfolds a large number


of words. You don't choose them one by one. There are any number of examples of the implicate order in


our experience of understanding, Any one word has behind it a whole range of meaning enfolded in


thought. Understanding is unfolded in each individual, Clearly, it's shared between people as they look at


one object and verify that it's the same, So any high level of that is a social process. There might be some


level of sensorimotor perception that is purely individual, but any abstract level depends on language,


which is social. The word, which is outside, evokes the meaning, which is inside each person, Meaning is


the bridge between understanding and substance. Any given array of matter has for any particular mind a


significance. The other side of this is the relationship in which meaning is immediately effective in matter.


Suppose you see a shadow on a dark night; If it means "assailant," your adrenaline flows, your heart beats


faster, blood pressure rises, and muscles tense, The body and all your thoughts are affected, everything


about you has changed. If you see that it's only a shadow, there's an abrupt change again. That is an


example of the implicate order: Meaning enfolds the whole world into me, and vice versa- that enfolded


meaning is unfolded as action, through my body and then through the world. Physicists are very skeptical


that the implicate order is worth investigating, The most convincing thing would be to develop the theory


in mathematical terms and make some experimental predictions. A few years ago The New York Times


noted that some physicists were critical of grand unification theory, saying that not much had been


achieved, Defenders of grand unification theories said it would take about five years to see results, It seems


that people are ready to wait four or five years for results if you've got formulas. If there are no formula,


no mathematical representation, they don't want to consider it. Formulas are means of talking utter


nonsense until you understand what they mean. Every page of formulas usually contains six or seven


arbitrary assumptions that take weeks of hard study to penetrate. Younger physicists usually appreciate


the implicate order because it makes quantum mechanics easier to grasp. By the time they're through


graduate school, they've become dubious about it because they've heard that hidden variables are of no use


because they've been refuted. At this point, I think that the major issue is mathematics. In super symmetry


theory an interesting piece of mathematics will attract attention, even without any experimental


confirmation.


The Summary


The act of information is quite far into classical physics, the thing makes up the classical physics is not just


the form of newtons law, but what you say about the forces, if you say that they are this character of


information it changes, but the entirely non-classical concept which is the activity of information


contributes to the property of substance in its foundation. Our concern should be whether we take the


wave function as the whole description or not; I have this particle, and the wave function for it would be as


the field of information that acts on the particle, the wave function which is a mathematical representation


of the field of information, in the case of one particle it's like a wave but it's a wave that acts according to


its form and not according to its intensity. Information comes from one of the these sources: (1) Collision


experiments where one particle is fired at another to record either the details of the resulting scatter or the


emission of new particles which may result; (2) The spontaneous decay or disintegration of one state into


another state(s); (3) Bound states in which one or more particles stick together and the properties of the


composite body are recorded. With many particles its more complex, It's something that works out of the


algorithm for calculating experimental results, the wave function is a part of an algorithm, a way of


calculating, Von Neumann said something little bit different that the wave function is the complete


description of quantum reality.


David Bohm




Quantum Theory


Quantum theory consists of two equal important parts:


1 Density Probability of the Schrodinger Equation


2 The Von Neumann Measurement Postulate


The evolution of the wave function described by the Schrodinger equation has two key features


1 It is a reversible process, so one can always undo the process in order to return to the initial state from


the final state


2 It is a deterministic evolution in which the final state is uniquely determined by the initial state if the


Hamiltonian is known.


Quantum Phase


A quantum state can be expressed as a linear combination of components of other eigenstates; every


component eigenstate has an associated phase. It is this phase which gives the wavefunction its wavelike


character. In order for the components to combine together correctly to produce a superposition state, they


should be in the same phase/coherent. Were the phases of the states be altered, the coherent phase


relationships between the components would be destroyed.


The Aharonov-Bohm effect


The wave pair splits into two coherent wave pairs that pass through perfectly conducting cylinders, i.e.


regions where E is always zero. The electric potentials φ1 and φ2 are slowly turned on after the pairs have


entered the cylinders, reaching steady values of φ1 and φ2. They are slowly turned off before the pairs exit


the cylinders. Each of them acquires phase, and they are made to recombine at the screen labeled


interference. The interference pattern changes as the difference between the potentials is varied. The


phase of an electron wave function is affected as it passes through the B≠0 region. However, if this is all


that happens, i.e. there is no boundary condition to be satisfied and the wave function only acquires a


phase shift; there will be no observable effect because ω is unaffected. On the other hand, interference


depends on relative phase. Thus, observable effects can arise in cases which two waves that are coherent


with respect to one another pass through a region of nonzero A and are then superposed. Following


passage through their respective A≠0 regions these waves are brought together such that interference is


observed. In other words, ω1+ω2 is affected by the relative phase between ω1 and ω2.


The Phase Factor


The solution of the Schrodinger equation yields a wave function whose phase is immaterial when it comes


to measurement. The phase factor α, is space-time independent, to α(r,t). If the original Schrodinger


equation contains the potential energy qφ, the phase factor needs to undergo the transformation α(r,t)


which is space-time dependent in order to cancel the term r,t. If the phase factor slowly changes its


direction such that it traces out a path that returns it to its original orientation; the Hamiltonian varies


accordingly. The eigenstates, remaining referenced to the phase factor throughout its slow evolution. Upon


completion of the path, the phase factor has returned to its original orientation, but has the eigenstate also


recovered its original form, or has it acquired a spin due to its adiabatic passage around the path.


The Schrodinger equation


ih dω/dt = - h2/2m d2ω/dx2


This equation implies that the wave function when rotated π/2 in the complex plane (this is what 'i' does);


changes in time in proportion to its curvature in space and in inverse proportion to its mass.


The time independent Schrodinger equation




For one dimension is of the form －h2/2m d2ωx/dx2+Ux ωx; where Ux is the potential energy. The time


dependent Schrodinger equation For one spatial dimension is of the form －(ℏ2/2m)∂2ω(x,t)/∂x2+Ux





ω(x,t) For a free particle where U(x) =0 the wave function solution can be put in the form of a plane wave


ω(x,t)=Aeikx. For other problems, the potential Ux serves to set boundary conditions on the spatial part of


the wavefunction and it is helpful to divide the equation into the time-independent Schrodinger equation


and the relationship for time evolution of the wave function.


Time Evolution: Hω=ih dω/dt


Time Independent Equation -h 2/2m ∂2ωx/∂x2[+Ux ωx


Free Particle Wave Equation




For a free particle the time-dependent Schrodinger equation takes the form: －h2/2m ∂2ω(x,t)/∂x2=ih





∂ω(x,t)/∂t


Presuming that the wave function represents a state of definite energy E, the equation can be divided by




the requirement: Eω=－h2/2m ∂2ω(x,t)/∂x2 Eω=iħ∂ω(x,t)/∂t





Arriving at Time Dependent Schrodinger


The time-dependent Schrodinger equation is a partial differential equation, a complete understanding of


which requires more mathematical preparation than we are assuming here. Fortunately, the majority of


interesting problems in quantum theory do not require use of the equation in its full. By far the most


interesting states of any quantum system are those states in which the system has a definite total energy,


and it turns out that for these states the wave function is a standing wave, analogous to the familiar


standing waves on a string. When the time-dependent Schrodinger equation is applied to these standing


waves, it reduces to a simpler equation called the time-independent Schrodinger equation. We will need


this time-independent equation, which will let us find the wave functions of the standing waves and the


corresponding allowed energies. Because we will be using only the time-independent Schrodinger equation


we will often refer to it as just the Schrodinger equation. The wave function of a particle of fixed energy E




could be written as a linear combination of wave function s of the form ω(x,t)-Aei(kx－wt)





(1 representing a wave travel in the positive x direction, and a corresponding wave travel in the opposite


direction, so giving rise to a standing wave, this being necessary in order to satisfy the boundary


conditions. The wave function above considered as being the appropriate wave function for a free particle


of momentum p-hk and energy E- hw. We can note that


∂2ω/∂x2= -k2ω (2




can be written, using E-p2/2m- h2k2/2m: －h2/2m ∂2ω/∂x2-p2/2m ω (3





using E-hw: ih∂ω/∂t- hω-Eω (4


Where there is both a kinetic energy and a potential energy present, then E-p2/2m+V(x) so that


Eω-p2/2m ω +V(x)ω (5


with ω is now the wave function of a particle moving in the presence of a potential V(x). But if we assume


that the results Eq.(3) and Eq.(4) still apply in this case then we have




－ h2/2m ∂2ω/∂x+V(x)ω-i ∂ω/∂t (6





Even though this equation does not look like the familiar wave equation that describes, for instance, waves


on a stretched string, it is nevertheless referred to as a wave equation as it can have solutions that


represent waves propagating through space. In general, the solutions to the time dependent Schrodinger


equation will describe the dynamical behaviour of a particle, in some way; solving Schrodinger equation,


what we get is a wave function ω(x,t) that tells us how the probability of finding a particle in some region


in space varies as a function of time.


The Time Independent Schrodinger Equation The time dependence enteres into the wave function via a




complex exponential factor exp[－h iEt/ [. This suggests that to extract this time dependence we guess a


solution to the Schrodinger wave equation of the form ω(x,t)-ω(x)e－ihEt/ (1





i.e. where the space and the time dependence of the complete wave function are contained in separate


factors. If we substitute this trial solution into the Schrodinger wave equation, and make use of the


meaning of partial derivatives:




− ℏ ²/2m d² ω (x)/dx² e−iEt/ ℏ


+ V(x) ω (x) e−iEt/ ℏ -i ℏ −iE/ ℏ e−iEt/ ℏ ω (x) -E ω (x)e−iEt/ ℏ (2





would be the time independent Schrodinger equation. The quantity E; the energy of the particle, is a free


parameter in this equation. To determine the wave function for a particle with some specific value of E that


is moving in the presence of a potential V(x), what we do is to substitute the value of E into the equation


with the appropriate V(x), and solve for the corresponding wave function. Writing ωE(x) as the solution


accompanied with a particular value of E, It turns out that it is not quite as simple as we supposed that to


be. The wave function ωE(x) plus its derivative should be continuous. The probability interpretation of the


wave function along with its continuity leads to the quantization of energy.




The relation between velocity and momentum in non-relativistic quantum → mechanics In quantum





mechanics, the velocity v, like the position q and the momentum p, is an operator. It is defined by the


relation:


v=i/h [H,q[ (1




where H is the hamiltonian operator, and [a,b] =ab－ba is the commutator of the operators a and b. In





non-relativistic quantum mechanics,




H=－h2/2m ▽2q+V(q) (2





corresponding to the time dependent Schrodinger equation ih∂ωdt=Hω (3


Hence, substituting this expression for H in Eq.1, one finds that the velocity operator is given by: v=p/m (4




where p=－ih▽ q (5





is the momentum operator.


The Hamiltonian Operator


H=- h2/2m d2ω/dx2 +Vx


Operators In Quantum Mechanics


With each measurable parameter in a physical system is a quantum mechanical operator. Such operators


arise because in quantum mechanics you are describing nature with waves (the wave function) rather than


with discrete particles whose motion and dynamics can be described with the deterministic equations of


Newtonian physics. Part of the development of quantum mechanics is the establishment of the operators


associated with the parameters needed to describe the system. It is part of the basic structure of quantum


mechanics that functions of position are unchanged in the Schrodinger equation, while momenta take the


form of spatial derivatives. The Hamiltonian operator contains both time and space derivatives.


Energy Eigenvalues


To obtain specific values for energy, you operate on the wave function with the quantum mechanical


operator associated with energy, which is called the Hamiltonian. The operation of the Hamiltonian on the


wave function is the Schrodinger equation. Solutions exist for the time-independent Schrodinger equation


only for certain values of energy, and these values are called "eigenvalues" of energy. While the energy


eigenvalues may be discrete for small values of energy, they usually become continuous at high enough


energies because the system can no longer exist as a bound state. For a more realistic harmonic oscillator


potential (perhaps representing a diatomic molecule), the energy eigenvalues get closer and closer


together as it approaches the dissociation energy. The energy levels after dissociation can take the


continuous values associated with free particles.


The Eigenfunctions


Corresponding to each eigenvalue is an eigenfunction; The solution to the Schrodinger equation for a given


energy involves also finding the specific function which describes that energy state. The eigenvalue concept


is not limited to energy. When applied to a general operator Q, it can take the form Qop ωi=qi ωi; If the


function ωi is an eigenfunction for that operator. The eigenvalues qi may be discrete, and in such cases we


can say that the physical variable is "quantized" and that the index i plays the role of a "quantum number"


which characterizes that state.


Time Evolution


If y is the wavefunction for a physical system at an initial time and the system is free of external


interactions, then the evolution in time of the wave function is given by: Hω=ih ∂ω/∂t where H is the


Hamiltonian operator formed from the classical Hamiltonian by substituting for the classical observables


their corresponding quantum mechanical operators. The role of the Hamiltonian in both space and time is


contained in the Schrodinger equation.
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Probability Density Function


Most often, the equation used to describe a continuous probability distribution is called a probability


density function . Sometimes, it is referred to as a density function. Since the continuous random variable


is defined over a continuous range of values; called the domain of the variable, the graph of the density


function will also be continuous over that range. The area bounded by the curve of the density function and


the x-axis is equal to 1, when computed over the domain of the variable. The probability that a random


variable assumes a value between a and b is equal to the area under the density function bounded by a and


b.


Probability Density Equation that predicts both the allowed energies of a system as well as the probability


of finding a particle in a given region of space does not yield the probability directly, but rather the


probability amplitude which is the probability that a single quantum particle moving in one spatial


dimension will be found in a region x[a,b[ if a measurement of its location is performed is


P(x[a,b[=Integrated sum of a to b [ωx[2dx which is known as probability density px; the probability that a


quantum particle will be found in a very small region dx about the point x is pxdx=[ωx[2dx Since particles


can exhibit wave-like behavior, the amplitude or wave function ωx should have a wave-like form. The


Schrodinger equation cannot be derived from any more fundamental principle. Recall the de Broglie


hypothesis stating that the particle has a wavelength λ given by λ= h/p or p=h/λ, If the particle is a free


particle, its potential energy V(x)=0, so that its energy is purely kinetic E=p2/2m= h2/2mλ2


If the amplitude ωx describes a wave, then it should take the mathematical form ωx=Bsin2πx/λ ,we are


considering a wave that is not changing in time here; Consider the cosine form (the same will hold for a


sine for as well) and consider the first two derivatives of ωx : dω/dx=-2π/λ Bsin2πx/λ d2ω/dx2=-4π2/λ2


Bcos2πx/λ ; therefore ωx and d2ω/dx2 are related by d2ω/dx2=-4π2/λ2 *ωx


Useful formula


Probability density


Density operator for a field mode


ρ=|ωq><ωq| /pure state


ρ=Σρi |ω(iq><ω(iq /mixed state


Spin Operators and the Pauli Matrices For a spin-1/2 system


The 1/2 refers to the quantum numbers. Spin should be considered as spin angular momentum and is


related to the intrinsic magnetic moment of a particle. Unlike orbital angular momentum (l= 0, 1,2,...),


spin angular momentum can take on integer and half-integer values (s= 0, 1/2, 1, 3/2, 2,...). Half-integer


particles are called fermions and integer spin particles are called bosons. The spin operators, Sx,Sy, and Sz


represent the effect of a measurement of the spin in one of those three directions, while S2 describes the


measurement of the spin squared of a particle. It turns out that these four operators can be written in


terms of Pauli 2 x 2 matrices.


Eigenstates of Sz




Since the z component of a spin-1/2 particle can take on just two values, +h/2 or －h/2 (quantum numbers


ms= +1/2 or －1/2), we often call these states spin up or down but indeed we are referring just to the z





component of spin. Since there are two values, we can write these states as two-component column vectors




which are eigenstates of Sz: |1/2,1/2>=|z+>=| > |1/2,-1/2>=|z->=| > These ↑ ↓ states are clearly





eigenstates of Sz which can be verified by direct calculation. These states can be explicitly determined by


using linear algebra to determine the eigenvalues and eigenvectors of the Sz matrix.


Eigenstates of Sx and Sy It is also of interest to write down the eigenstates of the other spin operators. We


can write such eigenstates in terms of eigenstates of Sz if we like. This is called a choice of basis or choice


of basis vectors. In particular, we find that the eigenstates of Sx are: or that We also have that and at last


The form of these states should convince you that eigenstates of one component of spin will not be


eigenstates of the other components of spin.


Classic Standing Waves By superposing two traveling waves, we form a standing wave. If we imagine a


string clamped between two fixed points separated by a distance a, we can ask: What are the possible


standing waves that can fit on the string? The answer is that a standing wave is likely, provided that it has


nodes at the two fixed ends of the string. The distance between two adjacent nodes is 2λ, so the distance


between any pair of nodes is an integer multiple of this, 2nλ. Therefore standing wave fits on the string


provided 2nλ =a , for some integer n; that is to say; if λ=2a/n where n=1,2,......


Standing Waves in Quantum Mechanics Quantum


standing waves have the sinus time dependence of the particular combination of coswt/sinwt. ω(x,t)=ωx


(coswt-isinwt) might be simplified if we use Euler's formula the theory of complex numbers


cosθ+isinθ=eiθ. This identity can be illustrated in the complex plane, where the complex number z=x+iy is


represented by a point with coordinates x and y in the complex plane. Since the number eiθ (with any real


number) has coordinates cosθ and sinθ, we see from Pythagoras’ theorem: eiθ=√cos2θ+sin2θ which


implies the complex number eiθ lies on a circle of radius 1, with polar angle θ. Notice that since cos-θ=cosθ


and sin-θ=-sinθ; The equation for e-iθ would be: e-iθ=cosθ-isinθ. Back to ω(x,t)=ωx (coswtisinwt) plus


using cosθ+isinθ=eiθ, the general standing wave of a quantum system would be : ω(x,t)=ωx e-iwt


The wave function probability density ω(x,t)[2 is the probability density associated with a quantum wave


function. for the complex standing wave this has a remarkable property; [ω(x,t)[2=ωx[2 e-iwt[2 For a


quantum standing wave, the probability density is independent of time. so the equation above simplifies to


[ω(x,t)[2=[ωx[2 . this is likely because the time dependent part of the wave function; e-iwt=coswt-isinwt,


is complex with two parts that oscillate π/2 out of phase; when one is growing, the other is shrinking in


such a way that the sum of their squares is constant. Thus for a quantum standing wave, the distribution


of matter is time independent or stationary. For this reason a quantum standing wave is often called a


stationary state, who are the modern counterpart of Bohr’s stationary orbits and are precisely the states of


definite energy. Because their charge distribution is static, atoms in stationary states do not radiate. An


important practical consequence of this would be that in most problems the only interesting part of the


wave function ω(x,t) is its spatial part ωx. We see that a large part of quantum mechanics is devoted to


finding the possible spatial functions and their corresponding energies.




























The Von Neumann Measurement Postulate
































1. It is clear that an observation of a physical system G can be descried as a writing down of the


readings from various compatible measurements. Thus if the measurements are denoted by the


symbols, then an observation of G amounts to specifying corresponding numbers. It follows that


the most general form of a prediction concerning G is that the point determined by actual


measuring lie in a subset S of observation-space. Hence if we call the observation-spaces associated


with G, we should call the subsets of the observation―spaces associated with any physical system


G, the “experimental propositions” concerning G.


2. Before a phase-space can become imbued with reality, its elements and subsets should be


correlated in some way with experimental propositions which are subsets of different observationspaces.


Moreover, this must be so done that set-theoretical inclusion which is the analogue of


logical implication is preserved. There is an obvious way to do this in dynamical systems of the


classical type. One can measure position and its first time derivative velocity―and hence


momentum―explicitly, and so establish a one-one correspondence which preserves inclusion


between subsets of phase-space and subsets of a suitable observation-space.


Time dependent Von Neumann measurement


Consider the time dependent observable Q(t)=Z Σsp(t) composed of GMH's projectors. Observe


that coarse graining is equivalent to N subsequent measurements of Q(t1),Q(t2).....Q(tn) to


perform a la Von Neumann. The time set h is given by the sequence (s1,s2.....sN) of the individual


measure outcomes. The time set-dependent state turns out to be the resulting state after the N


measures and, furthermore, the probability of the corresponding history can be recognized as the


standard probability of the N subsequent wave function collapse. We owe to translate the crucial


decoherence criteria as well. Let us consider the most simple case by taking N=2, and consider


decoherence between histories h=(s1,s2) and h'=(α1,α2) respectively. Invoking the decoherence


functional must vanish for nonidentical time sets. It is now straightforward to prove the following


statement: "If the equation for nonidentical time sets is satisfied then the expectation value of


Q(t2) in a Von Neumann measurement at t2 will be independent of whether Q(t1) was earlier at


t1


Group-Measure space von Neumann




Given a measure preserving action Γ X of an infinite group, one can construct an associated → groupmeasure





space von Neumann algebra, the crossed product M=L(X) Γ. If Γ is infnite, then M is a type II1


factor if:


1. The action is free: for every non-identity γ belongs to Γ, the measure of the set of points of X fixed


by γ is zero;


2. The action is ergodic: the only subsets of X that are Γ-invariant up to null sets are either


themselves null or have full measure, i.e. X has no Γ-invariant subsets.


One of the main problems in the theory of von Neumann algebras is to classify such M up to normal


*--isomorphism in terms of their "group/action data". There are various notions of equivalence for


group actions. We will be concerned with one levels of equivalence,i.e. conjugacy:


Conjugacy




Two group actions Γ 1 X1 and Γ 2 X2 are said to be conjugate if there is → → a group isomorphism:


Γ 1→ Γ 2





There is one concept which quantum theory shares with classical mechanics and classical


electrodynamics;That is, the concept of a mathematical “phase-space.” According to this concept,


any physical system G is at each instantly associated with a “point” p in a phase-space; this point is


supposed to represent the “state” of G, and the “state” of G is supposed to be ascertainable by


“maximal” observations. Furthermore, the point p_0 associated with G at a time t_0, together with


a prescribed mathematical law of propagation, fix the point p_t associated with G at any later time


t; this assumption evidently embodies the principle of mathematical causation. Thus in classical


mechanics, each point of phase-space corresponds to a choice of n position and n conjugate


momentum coordinates―and the law of propagation may be Newton’s inverse-square law of


attraction. Hence in this case phase-space is a region of ordinary 2ndimensional space. In


electrodynamics, the points of phase-space can only be specified after certain functions-such as the


electromagnetic and electrostatic potential―are known; hence E is a function-space of infinitely


many dimensions. Similarly, in quantum theory the points of phase-space correspond to so-called


“wave―functions,” and hence phase-space is again a function-space―assumed to be Hilbert.


Von Neumann Algabra-Ergodic Action


Lie Groups


If we look at an object such as a crystal with light whose wavelength is longer than the interatomic


distances, we perceive it as a continuous rather than a discrete structure. While we can no longer see the


local structure, we can still see the global structure. In applied mathematics, structures which are discrete


at the atomic level are modelled by continuous structures; e.g. in the equations of fluid dynamics. The first


of these jumps between the continuous and the discrete is justified by the belief that the macroscopic


properties of the discrete fluid and those of the continuous model are the same, while the second


approximation is justified by the functional analytic methods of computing. We consider structures with


symmetry, such as cosmological space-time for which an initial assumption is that the universe is


homogeneous This assumption is expressed by saying that the laws of physics are invariant under certain


changes of coordinate system. In such structures, the symmetries form a continuous group, typically a Lie


group. The space itself is usually a quotient space/homogeneous space of the Lie group. Our basic question


is then how a homogenous space can be naturally approximated by a discrete structure. In particular, we


ask how Lie groups can be approximated by discrete structures, and in this case the natural discrete


structures are the discrete subgroups. In some sense, we are concerned with the problem of seeing the


global properties of graphs which embed nicely in manifolds, because the lattices of the title are discrete


groups, and to a discrete group we can associate its Cayley graph. Alternatively, we are looking for ways of


comparing the global geometry of a Lie group with that of a discrete subgroup. A lattice Γ in a Lie group G


always assumed connected, and usually algebraic is a discrete subgroup of G such that G/Γ has finite Ginvariant


measure. For this to become likely, G should be unimodular. We say Γ is uniform or compact if


G/Γ is compact. Two lattices Γ1 and Γ2 in G are called commensurable if Γ1Γ2 is of finite index in both. One


would expect commensurable lattices to have similar global structure. we outline some of the basic


algebraic results about lattices in Lie groups obtained roughly between 1955 and 1975, and sketch some of


the more recent analytic developments of the theory. In the second part, we describe in more detail the


work of U.Haagerup, of Cowling and Haagerup, and of Cowling and R.J. Zimmer on von Neumann algebraic


and ergodic theoretic rigidity for lattices. This work is based on the notion of a completely bounded


operator in the von Neumann algebra of a group or of an ergodic action.


M.Cowling


The QND


The Quantum non-demolition measurement In 1975, physicists trying to construct a gravitational wave


detection antenna faced a dilemma. To detect a gravitational wave with a reasonable probability, they


needed to improve the measurement precision for a free mass detector or mechanical harmonic oscillator


detector. However, the theoretical analyses for various measurement schemes showed that the precision of


such measurement schemes couldn't exceed the standard quantum limits which are imposed by the


Heisenberg uncertainty relations. Soon after it was recognized that a certain nonstandard measurement


scheme, based on a carefully chosen observable and carefully prepared measuring device, can indeed


exceed the standard quantum limits.


Cavity Mirror


Simplest QND measurement scheme of the photon number is the one using a movable cavity mirror. At


each time a photon is reflected by the mirror, the momentum 2hk is imposed on the mirror. The mirror's


inertia is large enough, so the mirror does not respond to the electromagnetic frequency. It is known that


the photon number is preserved when the cavity is deformed. The mirror acquires the momentum from


the electromagnetic field during the time interval T. In order to measure this momentum change, we can


measure the position of the mirror with a time interval T.


CV QND


The act of measuring a quantum system to acquire information about it, might disturb the system.


Quantum non-demolition QND measurements allow for the measurement of an observable of a quantum


system without introducing a back-action on this observable due to the measurement itself. QND


measurements explore the fundamental limitations of measurement and may prove useful in gravity wave


detection,telecommunications and quantum control. The traditional domain of experimental QND


measurements is continuous-variable CV quantum optics. CV QND measurements are performed using


only Gaussian states (those states of the electromagnetic field with a Gaussian Wigner function), working


with quadrature components of the field proportional to number and phase in a linearised regime. They


have been characterized by considering the signal to noise transfer and conditional variances between


various combinations of the input, output and measurement output of the device. These are known as T-V.


In contrast, discrete variable quantum optics typically deals with two level quantum systems such as the


polarization states of single photons. Quantum bits or “qubits” can be carried by such systems. Progress in


the field of quantum information, in particular in the realization of two qubit gates, has opened a new


domain in which QND measurements can be demonstrated. Indeed QND measurements are critical to


many key quantum information protocols, such as error correction, and enable new computation models.


Until recently it was only in the domain of cavity quantum electrodynamics that interactions sufficiently


strong as to probe the qubit domain could be achieved with optical fields. However the work of Knill,


Laflamme and Milburn introduced the technique of measurement induced non-linearities and led to


proposals for non-deterministic realizations of QND measurements for traveling fields; In these schemes


the non-linearity is induced through photon counting measurements. In this paper we investigate the


character, characterization, an optical implementation and a fundamental application of QND


measurements on qubits. We begin in the next section by describing the basic features that a QND


measurement should display. We then propose quantitative measures by which the quality of any QND


measurement can be assessed. We consider qubit systems primarily but also discuss the application of


these measures to systems of any dimension. Then we consider the trade-off between the accuracy of the


QND measurement and its inevitable back-action on the conjugate observable to that being measured. In


section IV we discuss the example of the controlled-not (CNOT) gate and show how it can be used to to


make generalized QND measurement of arbitrary strength. How such measurements can be implemented


in optics is described in section V. In section VI we discuss the domain of weak valued measurements and


propose experiments which would highlight some fundamental peculiarities of quantum mechanics.


Fidelity Measure For QND Measurement A measurement device takes a quantum system in an input state,


described in general by the density matrix ρ, and via an interaction yields a classical measurement


outcome,i, of some particular observable. The quantum system is left in the corresponding output state ρ i.




To be considered a QND measurement, the device should satisfy the criterion′ :





" The measurement result should be correctly correlated with the state of the input;


e.g., if the input state is an eigenstate of the observable being measured, then in an ideal QND


measurement the measurement outcome corresponding to this eigenstate should occur with certainty."


Quantifying performance with fidelities


The QND measurement can be tested relative to the criterion by performing repeated


measurements of a set of known signal input states {ρ}. Let {|ωi>,i=1,...,d} be a basis of eigenstates of the


measurement of a system with dimension d. The relevant probability distribution: p in of the signal input,


which consist of the diagonal elements of the signal input density matrix ρp in=|ρ,ωi> in the basis of


eigenstates of the measurement. To quantify the performance of a QND measurement, we define measures


that can be applied to all input states. These measures each compare two probability distributions p and q


over the measurement outcomes i, using the classical fidelity: F(p,q) =Σ√piqi[2 (1) Note that F= 1 for




identical distributions, whereas F=d－1 for uncorrelated distributions;e.g. comparing a lowest entropy


distribution {1,0,0,...,0} and the highest entropy distribution {d －1,d－1,...,d－1}). For the special case of





d= 2, we also have that F= 0 for anti-correlated distributions, for example, {1,0} and {0,1}. As with the


probability distributions, these fidelities are also functions of the signal input state. The Criterion:


Measurement fidelity


The criterion requires that the measurement result is correlated with the state of the input. A device can be


tested against this requirement by measuring a set of known states {ρ} and analyzing the resulting


statistics. For example, consider tests involving signal input states that are eigenstates of the observable


being measured. Comparing the input distribution p in which, in this case, are lowest entropy distributions


of the form {0,0,...,1,...,0} with the measurement distribution pm consisting of the probabilities of


measuring the result i quantifies the correlation between the input and the measurement result. However,


we note that a QND measurement device is also expected to reproduce the expected measurement statistics


for any state, including those that are superpositions of eigenstates, and thus it is necessary to analyze the


performance for such non-eigenstate inputs. To quantify the performance of a QND measurement against


our criteria, we define the measurement fidelity for the input state ρ to be: FM=F(p in,pm) (2) which gives


the overlap between the signal input and measurement distribution. As an illustrative example, consider a


device where the measurements results are uniformly random and completely uncorrelated with the input




states. The measure statistics are then pm={d－1,d－1,...,d－1}. The resulting measurement fidelity will


then range from d－ 1≤FM≤1, where the lower bound is obtained for eigenstate inputs and the upper





bound is obtained for maximal mixed states or equal weighted superpositions of eigenstates. The


measurement fidelity FM can be used to quantify the performance as a measurement device for any signal


input state.


It is important to ensure that superposition states produce the correct statistics, and thus the


measurement fidelity should be measured for a representative set of states which spans the system.


T.C.Ralph, S.D.Bartlett, J.L.O’Brien, G.J.Pryde+H.M.Wiseman Department of Physics, University of


Queensland School of Science, Griffith University


Single Measurements


The system is coupled to a probe with arbitrary coupling strength, we obtain the reduced density operator


of the system proper after its interaction with the probe, and derive the socalled Luders rule as the limiting


case of strong coupling. We describe a state reconstruction scheme based on the procedure of successive


measures,then we obtain the so-called Wigner’s formula as the strong-coupling limit, Finding a general


transform of observables and states,in terms of complex quasi-probabilities and describing the Wigner


transform in terms of successive measurements of position and momentum would be the next step right


after obtaining the so-called Kirkwood’s quasi-probability distribution.


Two series for Gamma Function


It does not seem to be widely recognized that the Stirling asymptotic series for T(x) yields accurate


amounts for small integer arguments. However, Salzer has pointed out the effectiveness of this series in


approximating T(z) for large amounts of z even when R(z) is quite small. Though the Stirling series for ln


T(z) contains only odd powers of zr1, whereas the corresponding series for T(z) contains all powers of z~l,


nevertheless the latter provides an effective computational tool for the direct evaluation of T(z), esp. by


means of modern digital. For that reason, the precise rational amounts of the first coefficients of Stirling's


asymptotic series for T(z) have been calculated and are tabulated herein. The second series here


considered would be the power series for the entire function 1/T(z). The first extensive calculation of the


coefficients of this series appears to recalculated and corrected by Isaacson and Salzer. These emended


amounts have been reproduced in Davis and in the NBS Handbook.
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By work of Gaboriau we know that the L2-Betti numbers of a group only depend on the orbit equivalence


class of any of its free, measure-preserving actions on a probability space. This result and the subsequent


works of Popa and Connes–hlyakhtenko point to the intimate relationship between L2-Betti numbers of a


group G and the “measure theory” of G (represented by measure-preserving actions or the von Neumann


algebra of G). In the present talk we apply measure theoretic ideas to prove results about L2-invariants in a


geometric context like the relation between L2-Betti numbers of spherical manifolds and minimal volume,


general vanishing results or the quasi-isometry invariance of Novikov–Shubin invariants.


Roman Sauer


Margenau-Hill Distribution




The Margenau-Hill distribution is the real part of the Kirkwood distributions, so that: Re[(pn)w] =⌡ dp pn





M(q, p)/ |ρ>q where M(q, p) is the Margenau-Hill distribution. Re[(pn)w] is a conditional moment of the


Margenau-Hill during the short time of interaction. The equation of motion is given by the classical


Liouville theorem.


Kirkwood and Wigner Distribution Functions


There exists a great variety of quantum distribution functions in probability/phase space that are widely


used in many branches of quantum physics. The Kirkwood distribution function turned out to be a


generating function for almost all of them. It is also known as Terletsky or Rihaczek quasi-probability. In


quantum physics the knowledge of distribution functions of systems is a very important task. These are


functions defined in the phase space of the system, i.e. their definition area belongs to the combined


configuration position and momentum spaces (x,p). They are considered as quasi-probabilities since some


of them are not strictly non-negative functions in phase space. There exists a great variety of distribution


functions for quantum systems like bosons and fermions. It has been proved that all of them can be


obtained from one basic quantum distribution function, namely the distribution function first introduced


by Kirkwood via the action of suitable convolution pseudo-differential operators. Thus, it turns out that it


is important to know the Kirkwood distribution function for the existing different quantum systems. The


basic systems regarded in quantum mechanics are: a particle in a potential well, a harmonic oscillator and


hydrogen atom. The Kirkwood distribution function for them all was investigated by Evtimova and


Georgiev, Evtimova and Dishlieva. The main stream of investigations in the literature is focused on Wigner


distribution function. The goal for investigations of Kirkwood function is inspired by the fact that the


distribution occurs in a very natural way in the quantum field invariants such as energy momentum and


spin tensors of the corresponding fields.


Katya Georgieva


Sofia University


Luders Rule


The Luders rule describes a change of the state of a quantum system under a selective measurement: if an




observable A, with eigenvalues ai and associated eigen projections Pi, i=1,2;:::, → is measured on the


system in a state T, then the state transforms to → Tk:=PkTPk/tr [TPk[ on the condition that the result ak





was obtained. This rule was formulated by Gerhart Luders as an elaboration of the work of Von Neumann




on the measurement process and it is an expression of the projection postulate, or the collapse of → the





wave function. From the perspective of quantum measurement theory, the Luders rule characterizes just




one albeit distinguished form of state change that may occur in appropriately designed measurements of →


a given observable with a discrete spectrum. In general, the notion of → instrument is used to describe the





state changes of a system under a measurement, whether selective or not. The Luders instrument IL




consists of the operations ILX of the form → ILX(T)=ΣPiTPi, and it is characterized as a repeatable, ideal,





non degenerate measurement. In such a measurement, with no selection or reading of the result, the state




of the system undergoes the transformation T ILR(T)=ΣPiTPi=Σtr[TPi[Ti, the projection postulate then →





saying that if ak is the actual measurement result, this state collapses to Tk. Luders measurements offer an


important characterization of the compatibility of observables A;B with discrete spectra: A and B commute


if and only if the expectation value of B is not changed by a nonselective Luders operation of A in any state


T. This result is the basis for the axiom of local commutativity in relativistic quantum field theory: the


mutual commutativity of observables from local algebras associated with two spacelike separated regions


of space-time ensures, and is necessitated by, the impossibility of influencing the outcomes of


measurements in one region through nonselective measurements performed in the other region. The


Luders rule is directly related to the notion of conditional probability in quantum mechanics, conditioning




with respect to a single event. According to Gleason’s theorem, → the generalized probability measures on





the projection lattice P(H) of a complex Hilbert space H with dimension dim(H)>3 are uniquely


determined by the state operators through the formula μ(P) = tr[TP[ for all P in P(H). For any μ and for


any P such that μ(P) = ξ , there is a unique general probability measure μP with the property: for all R in


P(H), R>P, μP(R)=μ(R)/μ(P). The state operator defining μP is given by the Luders form: if μ is


determined by the state T, then μ is determined by the state PTP/tr[TP[. The Luders rule is also an


essential structural element in axiomatic reconstructions of quantum mechanics. It occurs in various




disguised forms as an axiom in quantum logic; → for example, it plays a role in the formulation of the





covering law. The Luders rule has a natural generalization to measurements with a discrete set of


outcomes a1,a2;:::, represented by a positive operator measure such that each ai is associated with a


positive operator Ai. The general Luders instrument, defined via the operations T ILX(T) =A1/2 i TA1/2 i, is




known to have approximate repeatability and ideality properties. The Luders theorem extends to ↦





general measurements under certain additional assumptions. The Luders rule is widely used as a practical


tool for the effective modeling of experiments with quantum systems undergoing periods of free evolution


separated by iterated measurements. It is success-fully applied in the quantum jump approach. The singleand




→ double-slit experiments with individual quantum objects are the classic illustrations of the physical





relevance of the Luders.


Paul Busch


University of York


Pekka Lahti


University of Turku, Finland


Phase-space representations


We take the overlap C(t)-<φ|ω(t)> between the time-evolved state |ω(t)> and the entangled reference


state |φ>=Σ|φa> |a>. Then the Wigner function provides us with the overlap of two pure states <φ|ω>[2.


It involves the product of the corresponding Wigner functions integrated over phase space, spanned by the


position x and momentum p of the wave function. For the Moyal function of the two states, Equation <φ|




ω>- dx dp W |ω><φ| (x.p), would be considered as a quite powerful expression since it ⌡ ⌡ yields the explicit





formula for the scalar product of two entangled states |ω> and |φ> of the form |φ>=Σ|φa> |a>, in terms


of Moyal functions of their oscillator parts |φa> and |ωa>.


The approach introduced by Michael Berry


A state whose ket is |n> evolves adiabatic under the influence of external parameters that we shall denote


collectively as R. These parameters vary on a time scale that is slow relative to the one on which the


particle dynamics associated with |n> transpire. As R undergo slow evolution, the time independent


Schrodinger equation yields eigenvalues and eigenfunctions at each instant of time, like a series of


snapshots: H(R)|n(R)>=En(R)|n(R)> (1


Equation (1) yields a separate set of eigenvalues/eigenkets for each value of R. The standard procedure of


electronic structure theory is to solve eqn (1) at different R. Consequently, this results in there being no


relationship between the phases of the solutions at different R. We are inclined to think that these


unknown phases, if they vary, do so smoothly with respect to R. However, eqn.(1) does not say anything


about relative phase. After all, it is solved for one value of R, then for another, and so on. In addition, we


might want |n(R)> to be single valued and differentiable (except perhaps at the point of closing a circuit),


because it will be necessary to take derivatives with respect to the parameters that comprise R as a path in


Rspace is followed. To have quantum mechanics, the system should satisfy a Schrodinger equation, or


something close to it, at all points in time throughout the adiabatic evolution: H(R)|ωn>=id/dt|ωn> (2


The use of a total derivative on the right and side is necessary in order to account for the adiabatic


evolution. It turns out that the geometric phase does not depend on the amount of time required to


complete the adiabatic cycle. However, it is necessary to take into account the changes that transpire in the


space of parameters R, and this is the reason for using the total derivative instead of a partial derivative in


eqn.(2). The state vector |ωn> includes phase factors for the usual Schrodinger eigenstate phase, as well as


an additional phase ρn(R). This phase is due to the adiabatic evolution of R. The rest is standard quantum


mechanics. The term ρn should be present; It is an admission of our ignorance regarding how the phase


evolves with R. Because phase evolves on the parameter space, we see that only R affects the phase. The


phase varies according to changes in R, not how long it takes these changes to happen. An equation for ρn


is obtained by putting the |ωn> into the right hand side of eqn (2). This yields three terms on the right


hand side, one of which cancels the term on the left hand side. Time does not play an explicit role in


determining the phase. Namely, ρn depends on the path, not how long it takes to traverse it. Different


paths that end at the same point in general give different phases, despite the fact that the time elapsed in


traversing them is the same. Thus, ρn can not be written as an explicit function of time. Using different


amounts of time to traverse the same path yields the same phase. Said differently, for a given path, the


phase accumulated in going from R0 to R is the same whether passage is carried out slowly or less slowly,


as long as it is done adiabatic. If R returns to its initial value via a closed path C, the geometric phase ρn(C)


is that of a completed circuit. If |n> is single valued its differentiation can be carried out with impunity


along C. We will see that |n> can be assigned an arbitrary, parameter dependent phase without changing


ρn(C), ensuring that a single valued wave function can be used. Even if |n> begins life not single valued, it


can be made single valued, including the point at which the circuit closes. In 1984, Berry pointed out that


in a cyclic adiabatic process, that is one in which the slowly time varying Hamiltonian returns to its


original form via a circuit C, a quantum state might acquire a geometrical phase factor in addition to the


normal dynamical phase factor. In an elegant calculation, Berry showed that if the circuit occurs in the


vicinity of a degeneracy of the hamiltonian in parameter space, then the geometrical phase is proportional


to the solid angle Ω subtended by the circuit at the degeneracy. As an illustrative example, He considered


spins in a magnetic field characterized by slowly varying parameters R. The Hamiltonian for this system


has a degeneracy at R=0 where B=0. For the simplest case of a cone, θ constant, the solid angle is Ω=2pi(1-


cosθ). Imagine that such a conical circuit is traversed adiabatical, that is to say with small σ, where


σ=2pi/T and T is the period of the circuit. A spin eigenstate with magnetic quantum number m should


accumulate a geometrical phase σ(C)=2pim(1-cosθ) in addition to the dynamical phase. Wilczek and coworkers


and Cina have suggested that a manifestation of the geometrical phase should be observed in


interference between eigenstates, for example in the evolution of a coherent superposition of states m and


m'. Such a superposition corresponds to magnetization or to higher rank tensor coherences and the phase


changes of such coherences have been observed for states in N.M.R. undergoing non-adiabatic circuits.


Upon completion of an adiabatic circuit, a coherence should acquire a geometrical phase change or extra


rotation, in addition to the dynamical procession angle φd. Chiao reported a classical optical version of


Berry's experiment for spins in a magnetic field in which the plane of linearly polarized light which


corresponds to a superposition of the m=+-1 photon states, was rotated by a geometrical phase imposed by


helical wound optical fibers. Tycko performed a nuclear quadru-pole resonance experiment in which the


geometric phase of a spin-3/2 was observed during rotation of a crystal, thereby moving the quantization


axis of the electric field gradient in a cone. The geometrical phase is also related to early work on fractional


quantum numbers in molecules and the classical work on conical intersections by Herzberg and Longuet-


Higgins.


Robert A. Harris, Alexander Pines


Choosing Phase


There are different ways to obtain ρ(C); For example, if the integrand vanishes along C, ρ(C) can be


calculated at the close of the circuit where the wave function is discontinuous. The integral vanishing along


C implies ω is orthogonal to dω which is not surprising. At α= 2π, ω undergo a phase change of π. Thus,


the equivalence of the approaches has been demonstrated. The geometric phase value of –π has been


obtained by integration on C both with and without a single valued wave function. Suffice it to say that α


depends on the Hamiltonian in a manner such that as α moves toward 2π the system moves around a


conical intersection. The . intrinsic angular momentum would arise as to the ω degeneracy. To verify that


the transformed wave function is single valued, multiply ω1 in the following Max. [ω1[=[cosα/2 sinα/2[φ1


[ω2[=[-sinα/2 cosα/2[φ2 by eiα/2 and write cosα/2 and sinα/2 in terms of exponentials.


Spin and Roothaan–all


The electron is known to have a spin with a quantum number s=1/2, the z-component of which is


quantised to take one of the possible values, ms=・}1/2. In order for electron spin to have meaning in


Hartree–ock theory, we should let the orbitals depend on it.


--------------------------------------------------------------------------


Fock Degeneracy


Symmetry and degeneracy are associated with each other. If a system has a symmetry under some


transformation, the generators of the associated group /Jacobi Identity commute with the Hamiltonian and


to each degenerate eigenvalue there correspond eigenstates which form an invariant subspace for a


specific irreducible representation. If such states form a basis for a reducible representation, it is said that


there is an accidental degeneracy between the eigenvalues associated with the irreducible parts of this


representation and the invariance group being used is not to be maximal group of symmetry. Examples are


the Hydrogen atom and the isotropic harmonic oscillator. The maximal group of symmetry in each case is


not related to geometrical transformations but arises from particular form of the force law. For that reason


these symmetries are called dynamical symmetry. For the Hydrogen atom or isotropic harmonic oscillator,


dynamical symmetry results from the corresponding classic system but in quantum theory there are not


always classic analogues. There are other known examples of quantum mechanical systems described by


Hamiltonians with accidental degeneracies for which a symmetry algebra has been identified as some


finite dimensional Lie algebra. As described by Moshinski the determination of these symmetry lie


algebras is more a matter of art than science.


The high pressure properties of Krypton


The importance of the four-body contribution in compressed solid krypton was first evaluated using the


many-body expansion method and the coupled cluster theory with full single and double excitations plus


perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest


neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock


and correlation parts of the four-body interaction were accurately determined from the ambient conditions


up to eight-fold volume compression. We find that the four-body interaction energy is negative at


compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the


compression, the four-body contribution becomes repulsive and significantly cancels the over-softening


effects of the three-body potential. The obtained equation of state (EOS) was compared with the


experiments and the density-functional theory calculations. It shows that combination of the four-body


effects with two- and three-body interactions leads to an excellent agreement with EOS measurements


throughout the whole experiment. 2012 American Institute of Physics Received 20 January 2012 Accepted


29 June 2012 Published online 25 July 2012 We thank Dr. Vadym Drozd (Center for the Study of Matter at


Extreme Conditions, Florida International University) for helping discussions. This work was supported by


the Chongqing's Science Foundation under Grant No. CSTC2009BA4005. Article outline: A. Selection of the


basis set B. Four-body interaction energy C. Equation of state The high pressure properties of Krypton are


of special interest for geophysical research and the equations of state EOS of solid krypton are accessible


up to 129 Gpa. Recently, the theoretical studies have revealed that the use of a two-body potential together


with the three -body correction could result in a good prediction of EOS in dozens of Giga pascal pressure


range, however with less satisfactory agreement at higher pressures. It was suggested that high order


many-body contributions, e.g. four-body system might be of some importance for highly compressed solids


of heavy rare gas elements. The two-body potentials of Krypton atoms may have been well established in


the previous observations, and the three-body interactions of krypton were investigated too in the works


of Loubeyre,Barker and Freiman, though few studies on the four-body contribution in krypton and other


rare-gas elements have been conducted. Due to the weakness of the dispersive energy of Van der Waals


very accurate ad initio methods should be required for calculating the interaction energies of rare gas


atoms. In fact the density functional theory DFT may not be accurate sufficiently enough to account for the


long-range dispersive interactions. At present, many-body expansion technique with the wave-function


based correlation methods is expected to give more accurate description for rare gas solids. Recently, one


of the wave-function based correlation methods, the coupled cluster theory with full single and double


excitations plus perturbative treatment of triples CCD(T) has been successfully applied to calculate the


two-body potentials of rare gas dimers of He2,Ne2,Ar2 and Kr2 as well as the three-body interaction for


neon trimer Ne3. There is little information about four-body interaction for Krypton and other rare gas


elements. The calculations of four-body interaction for rare-gas quadruplet are more difficult rather those


of two and three-body interactions as to the rise of computational effort which is proportional to the power


of seven of the number of correlated electrons at CCSD(T) level; and for Krypton atom the calculations are


much more demanding rather those of the light rare gases which could be due to the occupied d-shell


electrons. In addition, since a lot of different geometrical quadruplets exist in the crystal lattice, it should


be necessary to include a sufficient number of configurations to obtain a reliable interaction energy.


Though Rosciszewskiv have investigate the short-range four-body interaction energy in rare gas solids,


their observations were restricted to one four-atom cluster of the regular tetrahedron.


Chunling Tian, Na Wu, Fusheng Liu, Surendra K. Saxena Xingrong Zheng


Autoionizing States Of Noble-Gas Atome And Ions


Long-lived autoionizing states of argon, krypton, and xenon atoms, and of singly-charged argon ions, are


observed by the mass-spectrometric method. Special ion sources were used in which atoms were excited or


ionized by electron impact, and the autoionization process was registered by means of the ions produced in


a separate chamber. The long-lived autoionizing states of the atoms lie between the first and second


ionization limits, np5 2P3/2 and np5 2P1/2. The low ionization rate ( ~ 10-6 sec) is due to the large values


of the principal quantum number n and of the orbital angular momentum of the excited electron. These


states are not observed in optical spectra because of the selection rules for dipole transitions. IT is wellknown


that ions and atoms of the noble gases possess long-lived Rydberg states that lie near the ionization


limits and that can easily undergo ionization near a metal surface in an electric field or in collisions with


molecules. The atoms and ions of the noble gases possess two or more ionization limits to which different


Rydberg series converge. Excited states lying above the lowest ionization limit can autoionize.


Photoabsorption experiments have indicated that some of these states have short lifetimes ~ 10-13 sec with


respect to autoionization. In these experiments only optically allowed states were excited, to which dipole


transitions are allowed by the selection rules; these were ns and nd states. However, electron impacts also


excite optically forbidden states such as np and nf, which can possess small probabilities of autoionization.


It has been reported that collisions between electrons and noble-gas atoms produce longlived autoionizing


states of Ar+ and xe+ ions having lifetimes ~ 10-6 sec, but the nature of these states was not discussed. The


given conclusion was based on the observed way in which the ion intensity was influenced by the initial gas


pressure and electron energy. The principal experimental results obtained are that 1) in the process A+




A2+ +e (1) the intensity of the produced doubly-charged ions A2+ is directly proportional → to the





intensity of the initial singly-charged ions A+, 2) the doubly-charged ions A2 + are formed from the singlycharged


ions in accordance with (1) when the electron energy slightly surpasses (by about 0.5-1 eV) the




threshold for the production of doubly-charged ions from atoms in the process A+ e +A2+ + 3e (2) →





These results would provide a sufficient basis for the conclusion that A2+ ions result from


the autoionization. We shall here consider only the lowest ionization limits, which are formed by the


removal of an outer np6 electron from an atom or an outer np5 electron from a ion. of A+ ions if the initial


A+ ions did not possess additional highly-excited states that converge to the first ionization limit and are


therefore unable to autoionize although their excitation energies are close to autoionizing states. However,


the foregoing discussion points to the existence of such states, which sometimes behave like autoionizing


states. For example, the ionization processes of these highly excited states when ions in an electric field


collide with residual gas molecules (forming a background), or occurring near the metallic surfaces of


collimating slits, are also directly proportional to the intensity of the initial A+ ions. Nonuniformity of the


electron beam energy and a large difference (by a factor of about 10^5) between the intensities of the A+


ions and the A2+ ions produced therefrom according to (1) make it difficult to determine the exact small


difference between their thresholds. When the ion beams passed through narrow slits, It was likely that a


considerable fraction of the A2+ ions, which were attributed only to autoionization of A+, had resulted


from the ionization of highly excited A+* ions; these could include ions in autoionizing states, near the


metallic surfaces of the slits. It is therefore necessary to study long-lived autoionizing states of ions under


more determinate experimental conditions. Moreover, if singly-charged noblegas ions should appear in


such states, the same should also apply to the corresponding atoms. The present work is an investigation


of these effects.


EXPERIMENT


In the mass-spectrometric investigation of long-lived autoionizing states our basic task is the


discrimination of these states from lower-lying long-lived highly excited states. The task is difficult


because the two types of states have very close energies and, as already mentioned, in some experiments


they behave alike. Our work was done with a mass spectrometer and a esp. designed ion source that


enabled us to discriminate these two kinds of states. Autoionizing States of the Atoms The two-chamber


ion source had been changed in the following way, The second chamber Ka was lengthened to 13 mm in


order to permit a larger number of decays; its entrance and exit slits were enlarged to 4 x 16 and 6 x 16


mm, respectively, so that the atom beam collimated by the slit S1 = 1 x 8 mm would not come into contact


with the edges of the chamber slits. The narrow slit Sa = 1 x 9 mm behind the second chamber was covered


with a ""70% transparent fine copper grid. This was followed by the exit slit of the ion source. The ions


were retained in the first chamber by the retarding field VR =50 V, the field Vc =50 V of the deflecting


condenser, and a ""250-gauss magnetic field that also collimated the electron beam. A 3.05-kV accelerating


potential was applied between the slit S1 and the electrode A; the potential at the second chamber was 2.8


kV, and that at the slit Sa with the grid was 2. 5 kV. These quantities could be regulated in order to study


the influence of the electric fields on the ionization of the highly-excited atoms. The gas pressure in the


source region was usually,.., 10-5 10-4 Torr. The ion current was registered with a U1-2 electrometric


amplifier.


Autoionizing States of the Ions We investigated only singly-charged argon ions, which are the most


suitable for the present purpose. Long-lived autoionizing states were observed with a mass spectrometer


and a special ion source. Our source enabled us to distinguish between doubly charged Ar2+ ions resulting


from the autoionization of Ar+ * and other Ar2 + ions resulting from different processes, such as


ionization at the edges of the collimating slits or ionization in collisions with Ar and background atoms.


The source functioned as follows. Ar+ ions accelerated to 2.8 keV entered chamber K2, to which a certain


potential ・} V K was applied. The doubly-charged ions formed in this chamber from singly-charged ions


received the following energy: 2.8 'f VK (the energy of the singly-charged ions entering the chamber) plus


・} 2VK (received by doubly-charged ions leaving the chamber); the total was 2.8 ・} VK. The peak


representing these ions could therefore be shifted along the mass scale to a position that is free of


overlapping peaks. This peak could be formed by Ar2+ ions produced from Ar+* ions by only two


processes-autoionization and stripping when argon atoms collide with residual gas molecules. Ionization


of highly excited Ar+* at the edges of the chamber slits was excluded because these slits were very much


wider (23 x 23 mm) than the nearby collimating slits S1 (1 x 7 mm) and S2 (10 x 10 mm). The dimensions


of the remaining slits were 1 x 4 mm. Chamber K2 was 212 mm long. In the first chamber K1 highly excited


ions are produced by collisions between electrons (E) and atoms (A). These ions are extracted (B), focused


(F) and directed into the second chamber K2, where autoionization occurs. Ar+* ions that passed through


the grid lost an electron and were thus converted into Ar2 + ions that were registered on the mass scale in


accordance with the potential applied to the grid. The described apparatus was used to study how the


intensities of Ar+ produced in chamber K2 by collisions of electrons with argon atoms, and of Ar2+


produced from singly charged ions traversing the collimating slits, grid, and chamber K2, were influenced


by the following factors: Ar pressure, the background, and the electron current and energy. The


background pressure was varied by closing valves to reduce the rate of evacuation.


DISCUSSION OF RESULTS Our results indicate that multielectron atoms and ions of noble gases exist in


long-lived autoionizing states having lifetimes ~ 10-6 sec and lying close to the corresponding


ionization limits. In the case of noble-gas atoms these states lie between the two ionization limits 2P3/2


and 2P1/2 to which respective Rydberg series converge. These states result from the excitation of only a


single atomic electron. The ground level of doubly-charged noble-gas ions is a triplet; the three sub-levels


3Po, 3P1, and 3P2 of Ara.- are 43.58, 43.53, and 43.93 eV, respectively. These ions will therefore possess


Rydberg series converging to these three ionization limits. The levels that converge to the lowest limit 3P2,


are highly excited long-lived states which do not autoionize. The levels lying above the first ionization limit


will autoionize. Two spontaneous decay modes are possible for an excited autoionizing state: 1) a non


radiative transition into the continuous spectrum (i.e., autoionization), 2) a radiative transition to a lower


level or the ground state. For an allowed transition of the first kind, induced by inter electronic Coulomb


interaction, the transition rate is "'10-15-10-14 sec while for allowed transitions of the second kind it is "'


10-9 sec. In the cases of the excited atoms and ions that we registered both transitions must be forbidden,


or their probabilities are considerably reduced. This follows directly from the experimental result that


autoionization of the excited atoms and ions was observed ,..10-6 sec after their formation. For a radiative


transition the mean lifetime Tn of a highly excited hydrogen-like state is dependent on n: T n "' 10-9 n4,5,


Therefore with n > 6 the lifetime will be sufficiently long to permit observation of the described states in


our experimental work. The situation is different with regard to autoionization, which can result from


either Coulomb or magnetic interaction between electrons. In both instances the conservation of parity and


of the total angular momentum comprise strict selection rules. For Coulomb autoionization in the case of


LS coupling it is also necessary to conserve the total orbital angular momentum L and the total spin S;


However, these are not strict rules and can be violated as a result of magnetic interactions. For the noblegas


states of present interest it is known that LS coupling breaks down because of strong spin-orbit


interactions of atomic core electrons. Then jl, or possibly jj, coupling is the more suitable type. The


approximate selection rules for autoionization through Coulomb interaction will here be different and will


be derived by a calculation that is outside the scope of the present article. We note only that the strict


selection rules (conservation of total angular momentum and parity) hold true for the other types of


coupling also. The considered states of the discrete spectrum lie above the first ionization limit 2P3/2 and


the total angular momentum of their atomic core is J = 1 /2 2P1/2); Thus, as a result of autoionization the


total angular momentum of the atomic core should undergo a unit change (1/2 3/2 ). This transition can




occur only through Coulomb or magnetic interactions between core electrons → and excited outer





electrons, but not through interactions between electrons within the core. We are thankful to B. Firsov, S.


I. Grishanovaya, V. S. Senashenko, and B. M. Smirnov for discussions.
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Hartree-Fock-Roothaan theory


The Hartree–Fock–Roothaan (HFR) or basis-set expansion method is a convenient and powerful tool for


the study of electronic structure of atom. The most frequently used basis functions for atomic calculations




are Slater type orbitals STO defined as: Σn lm(ζ,r)=[(2ζ)n +1/2 /[Γ (2n +1)[2 rn∗－1 e－ζr Slm(θ, φ);





where Γ is the Gamma Identity and ζ considered to be Riemann zeta function.


Spin-Extended Hartree-Fock Method


The partial filling of degenerate one-electron levels calls for the use of the well-known Roothaan scheme


for open shells in atomic calculations. This method takes into account electron correlation and provides the


correct symmetry of the wave function even in the presence of degeneracy. When there is no degeneracy at


place one set of orbial should be left, whereas there is degeneracy there would be no pairing and we have


two set of orbitals. In the restricted Hartree-Fock, a one-determinant wave function is constructed from


orbital pairs, whilst in the presence of degeneracy which requires different set of orbitals for different


spins, the wave function is constructed from a twice as large set of the spatial orbitals which appear with


spins s and α. The partial location of the s and α electrons results in lowering of the symmetry of the spinsplitting


matrix with maintenance of the regular D4nh symmetry of the charge-density matrix as well as


the matrix z2. In Spin-Extended Hartree-Fock Method the last two matrix define quantities having physical


meaning, while the odd powers of z appear only in the generalized Fock operators Fα and Fs, which thus


also have a lowered symmetry. The arrangement and filling of the levels of Fs would be accomplished by


the removal of the degeneracy of the non-bonding levels as a result of the lowering of the symmetry. Their


corresponding orbitals also transform according to the representations of the D2nh group along with the


complete wave function. In the restricted Hartree-Fock the filling of the highest degenerate level is


equivocal. By applying the method which requires different set of orbitals for different spins, the 4π spin


up electrons fill the levels of Fs operator. We might be able to demonstrate this by applying the operation


of rotation through an angle equal to 2π/4n to the product of the rotation, which corresponds to certain


columns of the unprojected determinant. We might also be able to prove by some relatively simple


transformations that s and α spin inversion occurs in it in addition to the significant transposition of the


multipliers, when the arguments being put in a definite sequence.


After the spin projection, which is inherent in its essence to the method using different set of orbitals for


deifferent spins and also symmetrizes the wave function with respect to s and α, the result of the


application of the rotation operation is no longer accompanied by the undesirable s and α inversions. In


fact this should be clear from the property of the spin-projection coefficients for zero spin, where the


subscript indicates the number of transpositions of s and α. As a result the total wave function transforms


in accordance with an one dimensional representation of group D4nh, which can be specified from the


form of the degenerate non-bonding set of orbitals Xn and θn. Though the expressions of the projected


version of this method for Fs-Fα appear to be considerably more complicated even in their compact matrix


form, it should not be forgotten that here, in contrast to the approaches of the Roothaan type, electron


correlation is taken into account. Unlike the restricted Hartree-Fock this method is capable of describing


the configuration of structures with both unequal and equal alternating bond lengths. The energies of the


π-electronic conjugation decrease both in this method and in the RHF, as the degree of alteration k which


might be simulated by the change in the resonance integral of the neighboring bonds, is increased. The


total energy has a lower limit owing to the deformation of the σ component. While in the RHF the


difference between the orders of the neighboring bonds ΔP tends to a constant value, in AMO method the


bond orders alternate to a considerably lesser extent, tending to the same limit as k 1; Moreover, the




decrease in the energies of the π-electronic conjugation occurs appreciably more → slowly in the AMO and





thus here the consideration of electron correlation apparently favors weaker alternation of the bond




lengths. In the view of the increase in ΔE as k 1, the role of electron correlation is → esp. significant in the





case of configurations with weakly alternating or equal bond lengths.


Roothaan Parameters


In open-shell calculations within the restricted Hartree-Fock (ROHF), the coupling between the closed and


the open shells could be specified using two parameters α and β, which depend on the type of the open


shell, the number of electrons in it (the electron configuration), but also on the state to be calculated. For


example, there are three states arising from the s2p2 configuration of an atom (3P, 1D, 1S) which have


different values of α and β. Note that not all open shell systems can be handled in this way. It is possible to


specify α and β for atomic calculations with sn, pn, d1 and d9 configurations and for calculations on linear


molecules with πn and δn configurations, Furthermore, it is possible to do calculations on systems with


half-filled shells where α=1, β=2.


Spin functions β and α


We let the orbitals depend on the spin by attaching an extra label (superscript) to it, φkα=φαk(r)α,


φkβ=φβk(r)β, The functions φkα and φkβ are spin orbitals that depend on spatial and spin coordinates.


Having attached a spin label to the orbitals, we should write sums of the orbitals in the following manner:




without spin : Σ k-1 n with spin: Σ σ- α,β X k-1 nσ (nα+nβ=n) There is a sum over →⇒ → σ over the two





spin cases and then (dependent on the first sum) a second sum over the number of orbitals with that spin.


Gamma Function Identitiy


There are a number of rotational conventions in common use for indication of a power of a gamma


functions. While authors such as Watson (1939) use Γn(z) (i.e., using a trigonometric function-like


convention), it is also common to write [Γ(z)]n. The gamma function can be defined as a definite integral




for R[z]>0 (Euler's integral form) Γ(z)= Int. t(z-1)e(-t)dt (1 =2 Int. e(-t2)t(2z-1)dt, (2 Or Γ(z)= ⌡0→


1[ln(1/t)]^(z-1)dt. (3 →


The relationship between Γ(z) and the Riemann ζ(z) function ζ(z) is given ζ(z) Γ(z)= ⌡[(u(z-1)/(eu-1)[ du;





For R[z]>1 (4


Two Series for Gamma Function


It does not seem to be widely recognized that the Stirling asymptotic series for T(x) yields accurate


amounts for small integer arguments. However, Salzer has pointed out the effectiveness of this series in


approximating T(z) for large amounts of z even when R(z) is quite small. Though the Stirling series for ln


T(z) contains only odd powers of zr1, whereas the corresponding series for T(z) contains all powers of z~l,


nevertheless the latter provides an effective computational tool for the direct evaluation of T(z), esp. by


means of modern digital. For that reason, the precise rational amounts of the first coefficients of Stirling's


asymptotic series for T(z) have been calculated and are tabulated herein. The second series here


considered would be the power series for the entire function 1/T(z). The first extensive calculation of the


coefficients of this series appears to recalculated and corrected by Isaacson and Salzer. These emended


amounts have been reproduced in Davis and in the NBS Handbook. In the course of checking these


corrected amounts the present author has recalculated these coefficients and extended the approximations


to 31D.


The application of these new data is illustrated through evaluation of the main minimum of T(x) to 31D.


The zeta function As an analytical continuation has the functional equation of the form ζ(s)-x(s) ζ(1-s).


(1 In what follows we are going to use: x(s)=π^s-1/2 Γ(1-s/2) / Γ(s/2) (2 where Γ(s) denoted the Gamma


function. Recall that the zeta function has no zeros in the region 1<δ, the functional equation (1.5) reveals


that the only zeros for δ<0 are given by x(s) or precisely by the poles of Γ(s/2). The poles are located at s=


0; 2; 4;::: and describe the so called trivial zeros of ζ at s_ -2k. At s-0, we find a removable singularity,


since the pole of Γ compensated by the pole 1-s in eq.1. Hence, all other zeros have to lie in the critical strip


0<δ <1. Due to the functional equation (1), they should be located in symmetry to the axis δ-1/2, the critical


line.


Riemann Hypothesis


The Riemann Hypothesis states that non-trivial zeros of the zeta function have real part σ=1/2; There has


been considerable excitement about the connection between the Riemann Hypothesis and quantum


mechanics. Finding a proof has been the holy grail of number theory since He first published his


hypothesis. It was identified by Hilbert in 1900 as one of his 22 mathematical challenges for the 21th


Century, and by the Clay Mathematics Institute in 2000 as one of its seven $1million Millennium Prize


Problems. From a conference in 1996 in Seattle, aimed at fostering collaboration between physicists and


number theorists, came early evidence showing there are striking similarities between the Riemann zeros


and the quantum energy levels of classic chaotic systems. There are certain attributes of the Riemann zeta


function called its moments which should give rise to a sequence of numbers, However, for the past


century only two of these moments were known: First, calculated by Hardy and Littlewood in 1918; and the


Second, calculated by Ingham in 1926.


while the number theorists tried to do the same using their methods, Prof Jon Keating and Dr Nina Snaith


at Bristol describe the energy levels in quantum systems using random matrix theory. Using RMT methods


they produced a formula for calculating all of the moments of the Riemann zeta function.


Riemann zeta function implication for quantum mechanics Proving the Riemann hypothesis is to give a


spectral interpretation of the trivial zeros; if the trivial zeros can be interpreted as the eigenvalues of 1/2 +


iT, where T is a Hermitian operator on some Hilbert space, then since the eigenvalues of a Hermitian


operator are real, the Riemann hypothesis follows. The best evidence for the spectral interpretation comes


from the theory of the Gaussian Unitary Ensemble GUE, which show that the local behavior of the trivial


zeros mimics that of a random Hamiltonian. Gutzwiller gave a trace formula in the setting of quantum


chaos which relates the classical and quantum mechanical pictures. Given a chaotic classical dynamical


system, there will exist a dense set of periodic orbits, and one side of the trace formula will be a sum over


the lengths of these orbits. On the other side will be a sum over the eigenvalues of the Hamiltonian in the


quantum-mechanic analog of the given classical dynamic. This setup resembles the explicit formulas of


prime number theory. In this analogy, the lengths of the prime periodic orbits play the role of the rational


primes, while the eigenvalues of the Hamiltonian play the role of the trivial zeros of the zeta function.


Based on this analogy and pearls mined from Odlyzko's numerical evidence, Sir Michael Berry proposes


that there exists a classical dynamical system, asymmetric with respect to time reversal, the lengths of


whose periodic orbits correspond to the rational primes, and whose quantum-mechanical analog has a


Hamiltonian with trivial zeros equal to the imaginary parts of the nontrivial zeros of the zeta function.


In the Riemann hypothesis We can show the difference between the trivial and non-trivial zeros of the ζ


function by plotting their values in the complex plane, which is a coordinate plane resembling our ordinary


xy-plane. However, instead of the x-axis, we have the real axis; instead of the y-axis, we have the imaginary


axis. When we graph the zeros of ζ in the complex plane, the trivial zeros are all real, so they lie on the real


axis (the horizontal line). The other points on the graph are the non-trivial zeros of the ζ function; if the


Riemann Hypothesis is true, then they should have real part. In other words, they should lie on the critical


line, the vertical line σ=1/2. Note that the Riemann Hypothesis only concerns itself with non-trivial zeros.


As a result, by using the term zeros of the ζ function we refer to non-trivial zeros, unless otherwise stated.


To approch this F.Carlson introduced the function N(s,T, which equals the number of zeros of ζ(s) in the


rectangle s≤δ<1, 0
then pi(x+xθ)-pi(x)~xθ/logx for 1/b<θ.


Daniel Bump


The Riemann hypothesis implication for the Zeta function


The zeta-function on the critical line δ-1/2; has the most sure asymptotic for the discrete moment: Σm≤


ζ(1/2+iCm);


Turan says that the behavior of ζ(s, is inextricably connected with the distribution of primes. Therefore he


proves N(s,T, ≤2(1-s [exp(13 log 0.18 T, under a hypothesis that has nothing to do with primes. Laszlo


Kalmar called the following statement the quasi-Riemann hypothesis: One can find a number 1/2 ≤<1


such that ζ(s, has only finitely many zeros in the half plane δ-1/2. He gave a necessary and sufficient


condition for the quasi-Riemann hypothesis to hold. The manuscript was received on Dec. 2, 1945, he


lectured in Pest on Feb. 7th. Other applications soon followed. He already lectured in Prague: "A new


method in the analysis with applications that lists 12 previous papers of Turan in which the power sum


method being used." Expanded version in Chinese appeared in 1956; several Hungarian mathematicians,


mostly students and later collaborators of Turan joined him in solving the fascinating problems which


arose later.


The Hamiltonian Potential


There is nothing more repulsive that the harmonic potential that provided equiespaced levels; that is to


say: its levels conforms a perfect crystal, perfect repulsion. The fact that we have a log(E) law implies that


the repulsion is not perfect but the distance between levels (roots) is 1/log(E), almost constant, esp. at high


energies or short wavelengths. This is what switch the physical idea of energies with the mathematical


function ζ. 2.2.1. Asymptotic for δ-1/2 The definition of the Dirichlet series, it becomes obvious that the


behavior of for large positive real parts of s=δ+iτ is governed by the function Fe(s)=1 + e-sln2; (2.1)


Indeed, The only curves which start at δ+1/2, are the outgoing separatices of the points that are located


between the incoming ones at τ-+-(2k+1)π/ln2. The flows near the outgoing seperatices point to the right


leading back to the critical strip. The incoming separatices with imaginary part larger than π/ln2, cross the


complex plane from left to right forming natural groups of non-trivial zeros. In contrast, the outgoing


separatices with bigger τ's have to end in a non-trivial zero of the ζ, since they alternate with the incoming


separatices. Moreover, it seems that all the curves coming from right do not cross the critical line.


However, the separatix at τ-π/ln2 and the flow around it acts differently. Although the separatix comes


from the right and can be considered as outgoing part with respect to the hyperbolic point at s'0, it is


simultaneously an incoming separatices for the first trivial zero of the ζ'. The derivative ζ' has no zeros in


the left half of the critical strip 0<δ<1/2. Hence, it is worthwhile to investigate the Newton flow of ζ and its


derivatives, since it would reveal whether the Riemann hypothesis was violated.


2.2.2. The Newton flow of ζ reveals the separatices


The behavior of the Newton flow is governed by the asymptotic. From the eq. ζ(s)=[1+e-(1-s)ln2[ x(s);


(2.2) follows that the behavior of ζ for δ-1/2 is mainly determined by x in the equation 2. i.e. x(s)=π^s-1/2




Γ(1-s/2) / Γ(s/2); hence the speratices are real with phase 0 π in alternating sequence. → They direct the





flow into the trivial zeros of ζ' on the negative real axis, which are slightly shifted to the right of the


corresponding zeros of x'. Some real positive lines are separatices, the other flows end in the non-trivial


zeros of ζ. In the asymptotic for δ-1/2 given by eq. (2.1), Even though separatices are real and positive, only


the incoming parts start at negative leading into the zeros of ζ' at δ-1/2 and τ-2πk/ln 2. These form natural


groups of the non-trivial zeros of ζ. The corresponding outgoing separatices are the only ones starting at


+1/2. Their initial imaginary parts is τ-(2k+1)π/ln 2, and they might end in a non-trivial zero of ζ.


However, the separatices on the real line and the one starting at 1/2+iπ/ln2 are special.


2.2.3. The separatices of x and ζ


The influence of the Dirichlet series in the approximation eq. (2.2) is quite small in the left


half of the complex plane for δ<-4, the difference between the real separatices of x and ζ


indicating the phase π is the only visible on the right side of the critical line. In contrast, the


separatrices through the non-trivial zero of x on the critical line does not appear as


separatix in the flow of ζ, as well as other separatices to the right. There are two real


separatices of non-trivial zeros that enclose the flow between the poles s-1 and s-3 and the


zeros s-0 and s-2 of x. In contrast, the Riemann zeta function only has one real separatice in


this region, since ζ has only one pole at sp-1. This separatice starts at s- +iπ/ln 2 and leads


to the first trivial zero of ζ' at δ. The real separatices of ζ can be matched to some of the


positive real lines of x, whereas the negative real lines are similar to the negative curves of


ζ, which end in a nontrivial zero of ζ.


2.2.4. Non-trivial separatices So far, we have only described the real separatices of ζ


determined by the trivial zeros of ζ' located on the real axis or at σ-1/2. The outgoing parts


of the last form natural groups of two or more non-trivial zeros of ζ for τ>----. Hence, the


flow into different zeros of one group should be separated by non-real curves through


hyperbolic points. This property of the Newton flow indicates that there are n-1 non-trivial


zeros of the derivative ζ' in the region of a group with n non-trivial zeros of ζ, provided that


the higher derivatives of ζ do not vanish at the hyperbolic points. Otherwise, there are less


zeros of ζ'. Yet, should be noted that up to τ-100 no hyperbolic point exists where the


second derivative of ζ vanishes.


2.2.5. Combined-quantum systems


Our physical approach towards the Riemann zeta function takes advantage of its similarity to the time


evolution of a quantum state. When we choose the associated Hamiltonian appropriately, we can reproduce


the phases of the sum m and s in the different representations of ζ. The overlap with an adequate reference


state then takes care of the amplitudes. We are going to show how the phase space representations are


connected to the overlap of the states.


Theory of Attosecond Transient Absorption Spectroscopy of Krypton for Overlapping Pump +Probe/Pulses


The interaction of matter with light is a key process in physical systems on any length scale. The


fundamentals of matter-light interaction can be best studied in atomic systems due to their relative


simplicity. The absorption of light promotes electrons into excited states. If enough energy is absorbed by


the system, one or more electrons can leave the atom, i.e., ionization takes place. The most common types


of ionization are: single-photon and few photon ionizations, above-threshold ionization , and tunnel


ionization. Recently, high harmonic generation (HHG) has become a major tool in attosecond physics,


allowing one to generate ultrashort light pulses with broad spectral bandwidths. From the ability to


generate attosecond pulses, an entire new research area has emerged focusing on electronic dynamics and


molecular motion on their fundamental time scale. A particularly interesting aspect is the electron motion


and the corresponding hole creation dynamics during the ionization process . The high pulse intensities


used in these experiments distort significantly the potential of the electrons such that it is possible for the


electron to tunnel through or even travel over the barrier out of the system (i.e., tunnel ionization or


barrier suppression regime, respectively). A well-known model to describe tunnel ionization in atomic


systems is the Ammosov, Delone, and Krainov (ADK) model. The aim of this study is to investigate the ion


population dynamics in krypton within the pump pulse. We show that the instantaneous ionic state


population can be well captured by the transient absorption spectrum even for overlapping pump and


probe pulses. Furthermore, we observe strong modifications of the absorption lines in the transient


absorption spectroscopy when pump and probe pulses have the maximum overlap. We show that these


deformations can be understood by relative phase shifts in the ionic dipole. We identify that the highly


non-perturbative dressing of the N-electron states (particularly with the neutral ground state) is




responsible for the phase shift. Also the dressing of the ionic (N－1-electron) states, which leads to energy





shifts in the ionic states, contributes to the phase shift. The latter one is, however, much weaker than the


first dressing mechanism. Note that these two dressing mechanisms are quite different in nature. The first




mechanism dresses Nelectron states and the second one dresses N－1-electron states. To capture these





dressing mechanisms during ionization, a description of the entire N-electron system is required. We


describe the dynamics of the full N-body wave function with a time-dependent configuration interaction


singles (TDCIS) approach. The description of the pump and the probe steps requires at least two active


electrons, since the pump pulse ionizes an outer-valence electron and the probe pulse resonantly excites an


inner-shell electron into the generated hole. Therefore, it is crucial to use a multi-channel model, which go


beyond the single-active electron (SAE) approximation.


II. THEORETICAL METHODS


Equations of Motion By allowing only one electron to get excited or ionized out of the ground state


configuration, we strongly reduce the complexity of solving Eq. of motion. A suitable way to


achieve this goal is by exploiting the configuration interaction (CI) language and describing the Nbody


wave function in terms of the Hartree-Fock ground state. This approximation is known as CISingles


(CIS). The Hamiltonian operator is the residual electron-electron interaction, which go


beyond the mean-field potential. The vector and dual vector with respect to the symmetric inner


product required because of the non-hermiticity of Hamiltonian operator. The dipole interaction


between singly-excited configurations reduces to transitions between states of the excited electron


and transitions between ionic states. From the full N-body wave function one can construct the ion


density matrix (IDM) by tracing over the excited electron. The CAP is placed far away from the


atom such that an electron so far out does not affect the ion, esp. the ionic states. Therefore, the


absorption of an electron by the CAP results only in an artificial loss of norm Spin-Orbit Splitting In


order to include the effect of spin-orbit splitting in the occupied orbitals we account for spin-orbit


splitting with degenerate-state perturbation theory within the (n,l) orbital manifold. The occupied


orbital i is, then, characterized by the quantum numbers, the principal quantum number,the


orbital angular momentum, the total angular momentum, and the projection of the total angular


momentum onto the polarization direction of the external laser field. The orbital energies εi are


taken from experimental ionization potentials. For the virtual orbitals, we can neglect spin-orbital


splitting and use the quantum numbers na, la, σa, mL a to classify the orbitals, where σa is the spin


component in the laser polarization direction and mL a is the projection of the orbital angular


momentum onto the laser polarization direction. After the introduction of spin-orbit splitting for


the occupied orbitals, we cannot make use of the σ and mL symmetries independently to reduce the


number of singly-excited configurations, However, not all symmetries are lost and we find that


some are up to a global phase invariant under the parity transformation. Transient Absorption for


Overlapping Pulses The transient absorption signal is a direct measure of the cross section of the


System. The probe pulse was treated in first-order perturbation theory such that it was possible to


give an analytic expression for the transient absorption signal as a function of the instantaneous


IDM ρIDM(t). The pump pulse, usually a strong-field NIR pulse, which ionizes the atom by tunnel


ionization, was treated non-perturabative. For overlapping pump and probe pulses, the influence


of the probe pulse does not decouple from the impact of the pump pulse. Therefore, it is not clear


to which extent ρIDM(t) can be extracted from the transition absorption spectrum like for nonoverlapping


pulses. In order to fully capture the overall effect of pump and probe pulses, both


pulses are treated non-perturbatively meaning the TDCIS equations of motion are solved for an


electric field E(t) = Epump(t) + Eprobe(t). Note that the probe step could also be treated


perturbatively by introducing a two-time IDM, which depends on two different time arguments. In


our non-perturbative approach only the one-time IDM ρIDM(t) needs to be constructed for each


pump-probe configuration. From ρIDM(t) the ionic dipole moment can be calculated. By


performing the trace over ρIDM(t) and not over the full N-body density matrix ρ(t), we consider


only dipole transitions between ionic states. Transitions between virtual orbitals can be neglected,


since the XUV probe pulse interacts only weakly with the excited electron. Transitions between


occupied and virtual orbitals describe stimulated emission and photo-ionization processes. Both


mechanism do not lead to sharp features in σa(ω) around the bound-bound transition energies.


Therefore, we ignore these contributions, which lead to background signals we are not interested


in. The detector, where the transient absorption spectrum is measured, does not record the atomic




response but rather a damped spectrum of the form Eprobe(L,ω)2=Eprobe(0,ω)2 e－LnAT σa(ω),





where Eprobe(0,ω) is the incoming probe electric field, L is the length of the medium, Eprobe(L,ω)


is the probe electric field at the end of the medium, and nAT is the atomic number density. In this


Equation Beer law is used, which assumes a homogeneous medium and that the ratio hziion


(ω)/Eprobe(ω) is independent of Eprobe(ω) := Eprobe(0,ω). In Sec. IIIB the validity of Beer law is


discussed. Due to the finite energy resolution of the detector, the transient absorption signal in Eq.


(13) has to be co-evolved with a Gaussian mask function, where the full-width-at-half-maximum


(FWHM) width is given by the energy resolution of the detector. The cross section σm(ω) measured




at the detector can be related to the atomic cross section and is given by σm(ω) =－1 nAT LlnenAT





Lσa(ω) GδE(ω), where GδE(ω) is the Gaussian with the FWHM width of δE, and the symbol


stands for the frequency convolution.


Oscillating Dipole Model


Here we are going to develop general expression for the transient absorption spectrum, which is based on


a simple model. First, we reduce the description of the ion to a two-level system. The ground state |g> can


only be accessed by the pump pulse via tunnel ionization and the excited state |e> can only be accessed by


the probe pulse via resonant excitation out of |g>. The probe pulse, which may be approximated by a delta




pulse, i.e., Eprobe(t;τ) = E0 δ(t －τ), creates a coherent Superposition:


|Ψ(t > τ)> = a0|g>+ a1 e－i(ω0－iΓ/2) (t－τ)|e>,





where ω0 is the positive energy difference between the two states, 1/Γ is the lifetime of the excited state,




and a1 = －iE0 a0 z|g> results from the excitation by the probe pulse. This superposition leads


to an oscillating Dipole: z>ion (t > τ) =hΨ(t)|z|Ψ(t)> =－2E0|z|g >[2 |a0|2 ×sin[ω0 (t－τ)]e －Γ 2 (t－τ).





(15) We see that for a simple two-level system the cross section is purely Lorentzian and directly


proportional to the ground state population |a0|2 at the time of the probe step. Adiabatic energy shifts in


the ionic states during the intense NIR pulse result in a phase shift in the oscillating ionic dipole, i.e., z>ion




sin[ω0(t ∝ －τ) + φ(τ)]. Here, we assume the ionic state and the dipole oscillation live for a long time after





the NIR pulse is over such that the entire dipole dynamics can be approximated by a phase-shifted


oscillation. The phase shift φ(τ) has a dramatic influence on the shape of the transition line. Note that the


phase shift φ(τ) affects only the shape of the transition but not the strength z0. In the case φ = π/2, the


cross section shows a dispersive behavior and has equally negative and positive regions that lie


symmetrically around the field-free transition energy ω0(0). For all other phases, the cross section is a


sum of these two scenarios and becomes asymmetric around ω0. A phase shift by π changes the sign of the




cross section. For －π/2≤φ ≤π/2, the system shows an absorbing behavior whereas for π/2 ≤φ ≤/2π the





system is rather emitting. Similarly to the dressing of the ionic states, the influence of the excited electron


on the ion via the residual Coulomb interaction and via the pump field can lead to additional phase shifts in


the oscillating dipole. Furthermore, corrections to the transition strength z0 can occur, which may cause


z0 to be no longer directly proportional to the instantaneous hole population. In order to capture these




effects, we parametrize in addition to the phase φ(τ) also the transition strengths z0 z0(τ). →





Mechanisms leading to the Phase Shift The dressing of the ion can induce a phase shift in the ionic dipole.


In the following, we discuss in the language of TDCIS how the dressing by the field and the coupling of the


excited electron to the ionic subsystem can influence the phases φT(τ). First, we analyze the scenario


where the time evolutions of the excited electron and the ionic states are decoupled. The resulting EOM can


be written as Hamiltonians of the two Subsystems which affects only the excited electron, and the ionic


states. Note that the Hamiltonians of both subsystems commute. This is exactly the field-driven dressing of


the ionic system. After the pulse is over [E(t) = 0], the phase φion T (t,τ) becomes independent of t and




depends only on the probe time τ, i.e., φion T (t,τ) φion T (τ). Additional phase shifts → similar to φion T





(τ) can also occur due to the coupling between the ion and the excited electron. There exist two kinds of


mechanism that can couple these two subsystems: (1) the residual Coulomb interaction (2) the field-driven


mixing of the excited N-electron states with the neutral ground state. To distinguish the phase shifts


induced by the two different mechanisms, we introduce φresidual T (τ) and φground T (τ). The phase shift


due to the residual Coulomb interaction is denoted by φresidual T (τ), and φground T (τ) denotes the phase


shift due to the fielddriven mixing to the neutral ground state. Stefan Pabst,1,2 Arina Sytcheva,1 Antoine
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The Riemann States




2.2.6 Time Evolution: Hω=i dω/dt ℏ Time Independent Equation - h2/2m ∂2ωx/∂x2[+Ux





ωx (3.1


We consider the quantum state |ω(0)>=|ωos)>* |ωat)>-Σωn |n> * ce |e>+cg |g)>, (3.2


which is the direct product of the initial oscillator and atomic state, φ and |ωat)>,


respectively. The harmonic oscillator can be represented by a single mode of a cavity field


or the motion of a trapped ion. At time t-0, it is given by a superposition of Fock states |n>


with probability amplitudes ωn. . Likewise, the atomic state is in a superposition of the


ground and the excited state, |g)> and |e>, of a two-level atom with probability amplitudes


cg and ce. Both states have to be normalized to ensure the probability interpretation which


implies Σωn[2-1 and ce[2+cg[2-1. The time evolution arises due to the Riemann


Hamiltonian; HR= hω ln(n+1) σz; Here, ω denotes the Rabi frequency which establishes the


coupling between the atom and the field mode and σz= |e>


matrix. The Hamiltonian HR is reminiscent of the effective Hamiltonian of the JaynesCummings-


Paul model: HJC=hω nσz, which is central to cavity QED. With the Riemann


Hamiltonian HR, we get: |ω(t)>=|ωe(t)> | e>+|ωg(t)> |g>, for the time-evolved state. We


construct states which reproduce the Dirichlet series, ζ(s)=Σ1/n^s of the zeta function by a


joint measurement that is the the overlap C(t)-<φ|ω(t)> between the time-evolved state |


ω(t)> and the entangled reference state |φ>=Σ|φa> |a> along with the Wigner function


which then provides us with the overlap of two pure states <φ|ω>[2. It is crucial to keep in


mind that this representation is considered to be applied for σ>1/2, since this fact restricts


the quantum states to the same region; Therefore, we name these states Riemann states.


Moreover, we analyze the behavior of their phase space representations.


Phase space and quantum marginals The Wigner distribution function In 1932 Wigner




introduced a phase-space distribution function ω(q, p) =1/(2πh ω*(⌡ q+ξ/2) eipξ/h ω(q－





ξ/2)dξ , (1) which fulfills the fundamental requirement for a joint probability distribution


in phase space, i.e. when integrated over q or p, it gives marginal probabilities: |ω(q)|2 and




1/(2πh [ω(p)|2, where ω(p) =⌡ dq e-ipq/h ω(q), is the Fourier transform of ω(q). As shown





by Wigner, the function given by Eq. (1) is in general not positive. However, under simple


and reasonable physical assumptions it is unique. Thus, when one demands that: (i)


a phase space distribution P(q, p) is real, (ii) bi-linear in ω, (iii) gives the correct marginals, and (iv) its


dynamical evolution reproduces the Liouville equation in the classical limit, then the distribution P(q, p) is


unique and is the Wigner function. After Wigner work many different phase space distribution functions


have been introduced and investigated. There is a very rich literature devoted to applications of the Wigner


function and other various quasi-distributions in quantum optics. The simplest example of a phase space


distribution which does not satisfy the four assumptions leading to the Wigner function, but reproduces


the right marginal in an explicit way, is the distribution function: P(q,p) =1/2πh |ω(q)|2|ω(p)|2 (2)


Clearly, this distribution is not bi-linear in Ψ and as a result does not satisfy the requirements of the


Wigner uniqueness theorem. Another distribution function similar to that given by Eq. (2) can be guessed


taking formally a square-root of this expression. As a result, up to an arbitrary phase, we have P(q,




p)∼ω(q) [ω(p) (3) Note that this distribution function contains no information about the phase of the





wave function. A simple insertion of an additional phase factor φ(q,p) to the wave functions leads to the




expression: P(q,p)∼ω(q)eiφ(q,p) ω*(p) (4) that defines a class of bi-linear but complex distribution





functions. An example of such a distribution has been proposed just one year after Wigner introduced his


famous distribution function.


Rydberg Atoms


In order to probe the photons, we send across the cavity a special kind of Rydberg atoms, called “circular,”


in which the outer electron orbits on a circle of large diameter, about a thousand times bigger than an


ordinary ground state atom. These excited Rubidium atoms are prepared with lasers and radio-frequency


excitation, using a modified version of a procedure invented by Daniel Kleppner and Randy Hulet at MIT in


1983. According to quantum theory, the orbiting Rydberg electron is also a wave, which has a de Broglie


wavelength, and the condition of a stable orbit is that there is an integer number of these wavelengths


along the circumference. This number, called the principal quantum number of the Rydberg atom, is equal


to 51 or 50 in our experiments (these Rydberg states are called e and g respectively in the following). The


advantage of these circular Rydberg states of maximal angular momentum over the states of small angular


momentum employed in our earlier experiments is their very long natural life-time, on the order of 30


milliseconds for the states with principal quantum number 50 or 51. This life-time, of the same order of


magnitude as the photon life-time in our cavity, allows us to neglect in first approximation the atomic


decay processes during the interaction time between the atoms and the cavity field.


In the e and g Rydberg states, the circulating de Broglie wave has a uniform amplitude, resulting in an


electron charge density centered at the atomic nucleus, yielding a zero electric atomic dipole. In order to


prepare an electric dipole, a pulse of resonant microwave can be applied to the atom, bringing it in a


superposition of the two adjacent e and g states, with respectively 51 and 50 nodes in their wave function.


This superposition of states can be referred to as a “Schrodinger cat” because it implies an atom at the


same time in two levels, reminding us of the famous cat that Schrodinger imagined suspended between life


and death. A better name should be a “Schrodinger kitten,” because it is made of a single atom and thus


very small. The two de Broglie waves making up this “kitten” interfere constructively at one end of the


orbit and destructively at the other end, resulting in a net electric dipole, rotating in the orbital plane at 51


GHz. This dipole behaves as a rotating antenna extremely sensitive to microwave radiation. It can also be


described as the rotating hand of a clock, ticking at 51 GHz. When microwave radiation, non-resonant with


the transition between the two states e and g, impinges on the atom, it cannot absorb it and hence the


photons remain intact, ensuring the non-demolition character essential to our experiments. However, the


effect of this non-resonant light is to shift the atomic energy levels slightly and hence alter the rotating


frequency of the atomic dipole, our clock hand. This light shift effect had been discovered in 1961 by Claude


Cohen-Tannoudji in his seminal optical pumping studies. Light shifts are proportional to the field energy,


i.e. to the photon number. Being inversely proportional to the atom-cavity field detuning, they can be


maximized by tuning the cavity close enough to resonance (typically a hundred kHz away from the atomic


transition frequency in our experiments) but far enough to avoid any photon absorption or emission


process. In the case of Rydberg atoms, the effect is then very large, resulting in a phase shift of the atomic


dipole after the atom leaves the cavity which can reach the value of 180°, the dipole jumping in two


opposite directions when the photon number changes by one unit. Measuring this phase shift amounts to


counting the photon number without destroying the light quanta. Let us note that these light shifts play an


essential role in other atomic physics and quantum optics experiments. They are at the heart of the


methods used to trap and cool atoms in laser light, which were recognized by the Nobel Prize awarded to


Claude Cohen-Tannoudji, William Phillips and Steven Chu in 1997. In order to measure these shifts, we


followed a proposal that we made in 1990. We built an atomic interferometer around our photon storing


cavity. The atoms, prepared in the circular state e in the box O, cross the cavity C one by one before being


detected by field ionization in D. Essential to the experiment, two auxiliary microwave zones R1and R2are


sandwiching the cavity C. In the first one, the atoms are prepared in the state superposition of e and g, a


“Schrodinger Kitten” state. This procedure amounts to starting a stopwatch, giving to the atomic dipole,


i.e. to the clock hand, its initial direction. The atomic dipole then rotates as the atom crosses the cavity,


until a second microwave flash, applied in R2, is used to detect the direction of the atomic dipole at cavity


exit, thus measuring the phase accumulation of the clock. The combination of the two separated microwave


resonators R1 and R2 is known as a Ramsey interferometer. The device had been invented in 1949 by


Norman Ramsey (who was later to become the PhD advisor of David Wineland). The method of separated


field pulses is now used in all atomic clocks working on a hyperfine microwave transition between two


atomic levels. The excitation by the two successive pulses induces a sinusoidal variation of the transition


probability when the microwave frequency is scanned around resonance. This so-called “Ramsey fringe”


signal is used to lock the microwave frequency to the atomic transition. In our experiment, the Ramsey


interferometer is counting photons by detecting the perturbing effect they produce on the fringes of a


special atomic clock, made of microwave sensitive Rydberg atoms. If the phase shift per photon is set to


180°, the Ramsey fringes are offset by half a period when the number of photons changes by one. The


interferometer is set at a fringe maximum for finding the atom in e if there is 1 photon in the cavity. The


second pulse then transforms the state superposition of the atom exiting the cavity C either in state e (if


there is 1 photon) or in state g (if there are 0 photons), this state being finally detected by the field


ionization detector. The final atomic state g or e is thus correlated to the photon number, 0 or 1. In the


detection events as atoms cross a cavity cooled at 0.8K, which, according to Planck’s law, contains either a


vacuum (95% of the time) or one photon (5% of the time). One clearly sees when a photon pops inside the


cavity, stays for a while and then disappears. Due to noise and imperfections, the correlation between the


photon number and the atomic signal is not perfect, but a simple majority test allows us to reconstruct


without ambiguity the evolution of the photon number. The sudden change in the photon number is a


quantum jump, a phenomenon predicted long ago by quantum theory and observed in the 1980s in trapped


ions, as described in David Wineland’s lecture. It is observed here for the first time for light quanta. In the


event hundreds of atoms see the same photon between two quantum jumps, which demonstrates that our


detection method is quantum non-destructive (QND) for the field. Note that these field oscillator jumps


bear a strong similarity to the quantum jumps between the cyclotron oscillator states of a single electron,


which were also monitored by a QND procedure. Our photon counting method can be extended to counting


larger numbers of quanta. We start by injecting inside the cavity a small coherent field, a superposition of


photon number states comprised between 0 and 7. This field is produced by scattering on the edges of the


cavity mirrors a microwave pulse radiated by a classical source. This leads to the capture of a few photons


which survive between the mirrors long after the source has been switched off. We then just need to send a


sequence of atoms across the cavity, each carrying away a bit of information about the field. The phase


shift per photon is optimally adjusted to a value such that different photon numbers correspond to wellseparated


atomic dipole directions at cavity exit. At the start of the experiment, we have no idea about the


photon number and we assume a flat probability distribution, as shown by the histogram at the left of


Figures 12a and 12b, giving equal weights to the probability of having from 0 to 7 photons in the cavity. As


successive atoms provide information, our knowledge about the field evolves until finally a single photon


number is pinned down. The evolution of the inferred probability distribution is obtained by a Baysian


argument : each atom’s measurement provides information about the atomic dipole direction and allows


us to update our knowledge of the photon number distribution. This experiment shows, so to speak, live,


the measurement-induced “wave function collapse” which appears here as a progressive process


transforming a flat histogram into a single peak. The field, initially in a superposition of different photon


numbers, is projected by the mere acquisition of information into a photon number state, a so-called Fock


state of well defined energy. The process is random, The statistics of a large number of measurements


reconstructs the photon probability distribution of the initial state. It obeys a Poisson law, as expected for


a coherent state produced by a classical source of radiation. Once a photon number has been pinned down,


its ensuing evolution can be observed by continuing the measurement with subsequent atoms on the same


realization of the experiment. We then observe the succession of quantum jumps leading the field


inexorably back to vacuum, due to photon losses in the cavity walls. A statistical analysis of these


trajectories has allowed us to measure the Fock state life-times. Fluctuating randomly from one


preparation to the next, the life-time of the n-photon number state is distributed according to an


exponential probability law with the time constant Tc/n, where Tc is the cavity field energy damping time.


The 1/n variation of this life-time is a manifestation of the increasing fragility of these non-classical states


of radiation when their energy increases. They share this feature with Schrodinger cat states of light.


Field State Reconstruction QND measurements, repeated on many realizations of the same field, have


allowed us to reconstruct its photon number distribution P(n), which, for a coherent field, is a Poisson


function centered around its mean photon number value . These P(n) histograms provide only partial


information about the field. Describing the light intensity and its fluctuations, they are insensitive to field


coherences. In general, a field state is described by a density matrix ρ, whose diagonal elements ρnnin the


Fock state basis are the P(n) probabilities, and the off-diagonal ones, ρnn , describe the field coherence.




Expressed in terms of photon numbers, the P(n) probabilities are “1D” objects while the ′ ρnn coherences ′





are “2D” entities. Reconstructing coherences from the measurement of photon number probabilities, i.e.


“going from 1D to 2D” in the representation of the field, is analogous to going from 2D to 3D in


photography. The photon number distribution of a field state is indeed like a flat photo, obtained by


recording the light intensity that the object has scattered into the lens of a camera. To add an extra


dimension and achieve a full reconstruction, one must realize a hologram by adding phase information to


the one provided by the intensity recording. In photography, this is achieved by interfering the scattered


light with a reference beam— small fraction reflected off the main laser beam illuminating the object. The


interference pattern recorded on the hologram is a Fourier transform of the object. When illuminated by a


laser beam similar to the one which has produced it, the hologram reproduces the appearance of the object


by inverse Fourier transformation. Similarly, the full “2D” ρnn information contained in the quantum


state of a field can be reconstructed by mixing this field with reference fields of various phases and


amplitudes and by reconstructing the photon number distributions of these interfering fields. This


procedure is called quantum tomography. In our cavity QED experiments, the Rydberg atom Ramsey


interferometer is used to perform these state reconstructions. Identical copies of the field are prepared,


then admixed with reference coherent fields produced by a classical source. QND photon counting of the


resulting “mixed fields” are then performed. From the data accumulated in many realizations with


reference fields of different phases and amplitude, enough information is collected to reconstruct ρ. To


represent the field state, it is convenient to choose, instead of ρ, an alternative description. The field state


is formally equivalent to the state of a mechanical oscillator evolving in a parabolic potential. Its state is


represented by a real Wigner function taking its values in the oscillator phase space (the coordinates in


this space being the position x and momentum p of the fictitious oscillator, corresponding to “field


quadratures”). This function, which generalizes for the quantum field the classical concept of probability


distribution in phase space, contains the same information as ρ, to which it is related by Fourier


transformation. To keep the holographic analogy, the Wigner function is to the density matrix what the


hologram is to the direct image of an object. Its interfering patterns directly reveal the main features of the


quantum field.


Schrodinger Cat States of light and decoherence Studies By describing how we count and manipulate


photons in a cavity, I have so far emphasized the ‘particle aspect’ of light. As was recalled above, however,


light is also a wave. Which of the particle or the wave aspect manifests itself depends upon the kind of


experiment, which is performed on the field. Let us describe now experiments in which the wave features


of the field stored in the cavity is essential. This will lead to the description of photonic Schrodinger cats


and to decoherence experiments. At this stage, it is appropriate to recall Schrodinger’s thought


experiment. The Austrian physicist has imagined that a large system, a cat for instance, was coupled to a


single atom, initially prepared in an excited state spontaneously decaying into a ground state by emitting a


photon (or a radioactive particle). This emission triggered a lethal device, killing the cat. After half the lifetime


of the excited state, the atom has evolved into a superposition of two states, one of which would be


associated with the dead cat and the other with the live cat. At this point, the atom and the cat would be


entangled and the cat suspended between life and death. In our version of this experiment, we have a


single atom in a superposition of two states and this atom controls the fate of a coherent field containing


several photons (our Schrodinger cat), which takes two different phases at once, one that we can call


“alive” and the other “dead.” The way to perform this experiment was initially proposed in a paper written


in 1991 together with our Brazilian colleagues Luiz Davidovich and Nicim Zagury. A similar proposal for


the preparation of Schrodinger cat states of light in the optical domain had been made earlier in another


context. Our method again employs the Ramsey interferometer. It starts with the preparation of a coherent


field in the cavity, whose Wigner function is a Gaussian. A single non-resonant atom is then prepared in a


coherent superposition of two states, an atomic Schrodinger “kitten,” as I have already called it. This atom


crosses the cavity and its two components shift the phase of the field in different directions by a simple


dispersive index effect. Here again, we take advantage of the huge coupling of Rydberg atoms to


microwaves, which makes a single atom index large enough to have a macroscopic effect on the field phase.


At the cavity exit, the atom and the field are entangled, each atomic state being correlated to a field state


with a different phase (the phase difference being close to 135° in the experimental realization described


below). We can consider that the field, with its small arrow in the complex plane, is a meter used to


measure the atom’s energy. After the atom has been exposed to the second Ramsey pulse and detected,


there is no way to know in which state the atom crossed the cavity and the field collapses into a


Schrodinger cat superposition. In other words, the atomic Schrodinger kitten has produced a photonic


Schrodinger cat, which contains several photons on average. By sending subsequent atoms across the


cavity and achieving a tomographic field reconstruction with QND photon counting, we have been able in


2008 to reconstruct completely the Schrodinger cat state Wigner function. Theory shows that the coupling


of the field to the environment very quickly washes out the quantum coherence of the cat, leading it into a


mundane statistical mixture of states. W. Zurek has played an important role in elucidating the role of the


environment in this process, which occurs faster and faster as the “size” of the cat, measured by the square


of the distance of its components in phase space, is increased. For a given phase difference between the


Gaussian components, this size is proportional to the cat’s mean photon number. We have studied this


decoherence phenomenon by reconstructing the field Wigner function at various times. Within a time


much shorter than the energy damping time of 130 ms, the interfering features of the cat state are indeed


suppressed, leaving the Wigner function as a sum of two quasi-Gaussian peaks. We have checked that


decoherence occurs at a rate proportional to the size of the cat. It is important to stress that these


Schrodinger cat state recordings, as all field state reconstruction, are obtained from analyzing many


realizations of the experiment and performing complex statistical analysis of the data. Acquiring


knowledge about a quantum state always requires such a statistical procedure and these experiments rely


on the fact that we can prepare an arbitrary number of copies of the state to be reconstructed and follow


the subsequent evolution of all these copies. An earlier version of this experiment had been performed in


1996, with a cavity having a much shorter damping time, in the hundred microsecond range. Since it was


not possible to send a sequence of measuring atoms across the cavity before its field had decayed, the


experiment relied on the information provided by a single probe atom following the atom which had


prepared the cat state. Instead of reconstructing the whole Wigner function, we used this single probe


atom to get information about the Wigner function at phase space origin, where its value is very sensitive


to the cat’s coherence. Comparing the detection signal of the first atom which prepared the cat and that of


the second, which probed its coherence, provided a two-atom correlation signal whose decay as a function


of the delay between the two atoms measured the loss of quantum coherence of the cat versus time; There


might be a shortening of the decoherence time as the separation is increased, We have also prepared


Schrodinger cat states of radiation by resonant atomfield interaction. Letting a coherent field evolve under


its coupling with a Rydberg atom at resonance turns the atomfield system, after some time, into an


entangled atom-field state superposition involving two coherent fields with opposite phases. The two


components of this cat merge together at a later time. This effect of field phase splitting and recombination


is related to the collapse and revival of the Rabi oscillation phenomenon. The Schrodinger cat experiments


in Cavity QED illustrate the fragility of quantum coherences in systems made of increasing number of


particles. They give us a glimpse at the boundary between the quantum world, where state superpositions


are ubiquitous, and the classical one, where systems behave in a mundane classical way. A detailed study of


the cavity QED Schrodinger cats along with a review of proposals for the generation of various Schrodinger


cats in quantum optics can be found in the book “Exploring the quantum: atoms, cavities


and photons”.


Serge Haroche Nobel Lecture, December, 2012


How to measure directly the Wigner function of the field in Cavity QED


1. Translate field in phase space by -1


2. Send a non-resonant atom with a π-phase shift per photon across Ramsey interferometer. If atom


exits in level e (g), parity is even (+1) (resp.odd=-1).


3. Repeat with a large number of atoms and average between +1 (even) and -1 (odd) to find out the


mean parity. This yields W(1)


4. Repeat procedure for different α values to reconstruct W and thus ρ. The method, proposed by


Lutterbach and Davidovich is elegant in its principle. In practice, it requires to be able to realize a


π-phase shift per photon for arbitrary fields, which might not be possible due to non-linear atomfield


coupling. The Ramsey interferometer measures in fact a ≪ parity operator ≫ from which the


state can be reconstructed using estimation procedures.


Serge Haroche


EDM Atomic Parity Non-conservation Experiments


Physicists used to believe that parity is conserved in all interactions, and that natural laws do not


distinguish between the left and the right. The discovery in 1956 that parity is not conserved had an


immediate and profound influence on nuclear and elementary particle physics. However, there was no


such sudden impact on atomic physics because the force that distinguishes between the left and the right,


the weak interaction, is dwarfed in comparison with the electric and magnetic forces in atoms. There is no


atomic process, as in nuclear β-decay, in which the weak interaction is uniquely manifested. Only recently,


over two decades after the original parity revolution, has parity non-conservation PNC been observed in


the electronic structure of atoms. Atomic PNC is caused by an interesting form of the weak interaction not


known in 1956, the neutral current form in which the interacting particles (electrons and nucleons in the


case of atoms) do not change charge. These weak neutral currents are a central prediction of the unified


theory of weak and electromagnetic forces developed by Glashow, Weinberg, Salam and others in the


1960’s. One of the important tests of this theory has been to find the expected effects of the neutral current


interaction in atoms. Now that these effects have been observed, atomic PNC measurements should


continue to play a useful role in working toward a complete understanding of weak neutral currents. An


important symmetry that characterizes the unified theory in its present form is time reversal invariance


(T-symmetry). Likewise, the observed atomic PNC effects, such as optical rotation, possess T-symmetry. A


different type of PNC effect that violates T-symmetry is a permanent atomic electric dipole moment. Such


EDM has been sought in neutrons and in atoms and molecules. EDM confirm the long suspected existence


of T-violating forces between elementary particles. As early as 1959 Zeldovich estimated the size of optical


rotation due to a neutral current form of the weak interaction that might be expected in a gas of ground


state atomic hydrogen and concluded that this particular effect would be far too small to observe. Later


Curtis-Michel analyzed some possible experiments with excited states of hydrogen which would take


advantage of the close proximity of states of opposite parity, but at that time the experiments still seemed


to be very difficult. Two serious attempts were made in the 1960 to observe PNC in atomic systems by


looking for circular polarization associated with magnetic-dipole transitions. Upper limits were set for


molecular oxygen and atomic lead, but neither experiment approached the sensitivity required to observe


weak interaction effects. Meanwhile, extraordinary advances in the field theory of weak interactions


during the 1960 strengthened the theoretical basis for weak neutral currents. Renormalizable gauge


theories of the interactions among elementary particles led to a unified picture of the weak and


electromagnetic forces. The simplest of these theories was that of Weinberg and Salam, often called the


standard model" of electroweak interactions, in which the weak interaction between any pair of fermions




is mediated by the exchange of massive vector bosons, two charged ones,W-+', and one neutral one, Z ｰ.


Only one free parameter is introduced, the mixing angle between the bare Z ｰand bare photon, called the





Weinberg angle, Θw.


The charged bosons mediate the familiar form of weak interaction known in the earlier language of


current-current interaction as the charged or perhaps better, charge-changing current process. The best


known example is ordinary β-decay, in which a neutron is converted into a proton while an antineutrino




and an electron are created, i.e. n p+e+v. The equivalent scattering process is n+v p+→ e. In both cases the


neutron-proton current acts → through a W-+ with the neutrino-electron current. The weak neutral


currents predicted by the Weinberg-Salam theory are mediated by the neutral Z ｰ. In the case of atoms,





this neutral current allows the direct first-order weak interaction of the atomic electrons with the nucleons


and with each other without changing the atom's identity. For example, e+p e+p, e+n e+n, and also e+e




e+e. → → → In these cases, the electron-electron current acts through the Z ｰ with either the protonproton,





neutron-neutron, or electron-electron current. In 1973 high energy neutrinc+nucleon scattering


experiments demonstrated the existence of such weak neutral currents in nature. A variety of experiments


have subsequently shown neutral current phenomena, all consistent with predictions of the Weinberg-


Salam theory. The PNC neutral current interaction between electrons and nucleons has been established


both by measurements of high energy inelastic electron scattering from protons and deuterons, and by the


atomic PNC experiments. In addition, two groups using the CERN colliding beam facility have observed




both the W-+ and the Z ｰresonances directly in proton-antiproton collisions. Recent atomic parity nonconservation





PNC experiments Atomic PNC experiments under consideration in many laboratories received


vital encouragement in 1974 when Bouchiat and Bouchiat pointed out that there should be considerable


enhancement of neutral current effects in heavy atoms. They showed that PNC effects should increase with


atomic number Z roughly as Z3, and demonstrated that the heavy atoms Cs and Tl should exhibit optical


helicity more than 6 orders of magnitude greater than ground-state hydrogen. This work provided impetus


to world-wide experimental efforts with Cs, Bi and Tl. Later, after attention was drawn once again to


experimental possibilities with metastable atomic hydrogen, a number of experiments to measure PNC in


hydrogen also began. After several years of intensive effort the original goal of detecting and studying


weak neutral currents in atomic physics has been realized. Many experiments with heavy atoms have


attained enough sensitivity to see PNC effects of the size expected. Over the same period the complex


atomic calculations with heavy atoms have been refined considerably. Experimental results agree in sign,


and most agree in approximate magnitude, with the predictions of the most recent atomic calculations


using the Weinberg-Salam theory. However, there remain some discrepancies among the experimental


results that need to be clarified, and we still await the first results from the important atomic hydrogen


experiments. Improvements in experiments are being implemented which should set more stringent limits


on alternative gauge theories, detect certain neutral current couplings not yet observed, and likely test the




predicted contributions of Z ｰand W-+ radiative corrections. There have also been recent limits set by





experiments searching for a permanent atomic or molecular EDM and new atomic EDM experiments have




begun, with the goal of finding another manifestation of the CP violation observed long ago in K ｰdecay.





Observable effects : PNC-induced electric dipole moments


The inversion symmetry of a physical system and in a similar fashion the intrinsic symmetry of an


elementary particle can be described with the use of a parity operator; P. If the state function of the


physical system is, ω, the operator P inverts the spatial coordinates of the function, so that Pω(r)=ω(-r). If


Pω(r)=+-ω(r), then we say that the function ω has well defined parity (even parity if +,odd parity if -). We


also say that parity is conserved by an interaction if the Hamiltonian, H, for that interaction commutes


with the parity operator, or equivalently, if H is invariant under coordinate inversion. The measured


quantity in atomic PNC experiments which search for the inversion asymmetry is an electric dipole


moment, induced in an atom by a force which violates parity conservation. When this force violates timereversal


symmetry as well, dipole moment can be a permanent electric dipole moment EDM, which causes


an energy shift of the atom in an external electric field. If instead the force obeys time-reversal symmetry,


the Dipole is restricted to being a transition dipole moment which is observable through its interference


with some other atomic moment in radiative transitions between atomic states. We begin with a simplified


discussion. First suppose there is a permanent electric dipole fixed parallel to the total atomic angular


momentum F in a non-degenerate stationary state of an atom. In an external field E the negative energy


shift of the Dipole, E, proportional to F.E, clearly violates both P- and T-symmetry since F F, E -E under P,




while F -F, E E under T. Thus an observation of a permanent EDM parallel →→→→ to an atomic spin





would be clear evidence of an interaction in the atom which violates time-reversal invariance. Next


suppose that T-symmetry is not violated. Since we will observe no permanent electric dipole moment of


the atom, how can we observe a PNC effect? We should look instead for oscillating dipole moments


associated with transitions between atomic states. For example, suppose a magnetic dipole transition takes


place with an oscillating atomic magnetic moment M. The PNC force within the atom can induce the Dipole


with a component parallel to M, but T-symmetry requires these two oscillating moments to differ in phase


by π/2; otherwise the T-odd quantity of the Dipole moment M would not average to zero. This phase


difference in El and Ml radiation causes circular polarization, an observable PNC effect in the case of timereversal


symmetry. We now proceed to a complete and rigorous treatment.


E.N. FORTSON
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Conservation of Baryon Number


Baryons are hadrons, i.e. composite particles made of quarks composed of any three quarks. Baryon


number is conserved in a reaction. You should count each baryon as +1 and each antibaryon as -1. Nonbaryons




have a baryon number of 0. p- + p+ n° + p- + p+ → This is an observed event that conserves both


electric charge and baryon number. p+ p+ + p° → This conserves charge but not the baryon number.





Conservation of Lepton Number


The electron is the best known lepton. The tau and the muon are the other two charged leptons. Each


neutrino is associated with one of the charged leptons. Lepton number is also conserved in reactions.




Again, leptons have lepton number of +1, antileptons have -1, and non-leptons have 0. e+ + e- p+ + p→


This is an observed event that conserves both electric charge and baryon number. p- e- + g → Charge is





conserved, but lepton number is not. There are no leptons on the left, but there is one on the right.


Quantum Jump


Photons are absorbed in a quantum jump from a lower energy level to a higher energy level. The energy of


the emitted photon is exactly equal to the energy between the starting and the ending levels. For instance




the energy levels of the stationary states of the hydrogen atom are En=－13.60eV/n2 n=1, 2, 3,... In the


ground state (n=1), E1=－13.60eV. The change in energy when the hydrogen atom absorbs a 12.75 eV


photon is 12.75 eV ⇒－13.60eV[1/n2-1[=12.75 eV 1/n 2=.0625 n=4 When the atom, ⇒ having been excited





to n=4, undergo a quantum jump to the next lowest energy level corresponding to n=3, the emitted




wavelength is represented by λ4→3





Preservation of phase space volume and Liouville's theorem


The theoretical utility of the Hamiltonian is Liouville's Theorem. In Classical Mechanics, the complete state


of a particle can be given by its coordinates and momenta. For example in three dimensions, there are


three spatial coordinates and three conjugate momenta. If we consider a six dimensional phase space, a


point in that space represents the state of a particle. A particle will follow a determined path through phase


space, that is, given the particles a point in phase space, our equations of motion will yield the phase space


location of the particle at a later time or earlier time. So particles follow determined paths through six


dimensional phase space. Now consider a large number of particles in a beam. These particles can be


described by points in phase space per particle. For large numbers of particles in a system, or if we


consider a theoretical ensemble of particles, the system can be described as a density group which is a


function of the position in phase space.


The Dirichlet


When we rewrite the Dirichlet sum ζ(s)=Σ1/n^s, by using s=σ+iτ and shifting the summation index, it


becomes evident that ζ(s)-Σ1/(n+1)^σ [e-iτ ln(n+1) holds some similarities with the quantum mechanical


time evolution, |ω(t)>=|ωe(t)> |e>+|ωg(t)> |g> (3.3


Indeed, choosing ce-1 and cg-0, the overlap C(t) between the time-evolved state |ω(t)> and the entangled


reference state |φ> yields C(t)-Σφne ωn e-iωt ln(n+1) (3.4


We can reproduce the Dirichlet representation (3.3) by eq.(3.4). From the scalar product <φ|ω> emerges


the overlap of the state |ω(t)>-N(σ)Σ1/(n+1)^σ/2 [e-iωt ln(n+1) |n,e> (3.5


and its initial state |φ> to be applied as a reference. The normalization then gives


N(σ)-[1/√Σ1/(n+1)^σ]- 1/√ζ(σ) (3.6


which is convergent for σ>1/2. thus with these states we can describe the zeta function in the region where


the Dirichlet sum is convergent. The equation (3.5) clearly shows that the time-evolved state |ω(t)> would


remain a product state of the excited state |e> and the state |σ,τ> at the scaled time τ-ωt. Thus the overlap


reduces to the scalar product of the time-evolved state |σ,τ> with its initial state implying that


entanglement is not necessary for the description of the zeta function in the region σ>1/2, Therefore, we


call |σ,τ> the Riemann state. It is worthwhile to mention that |σ, τ> constitutes the thermal phase state: |


ωp>=NpΣe-σn/2 |n>; (3.7


Both states are coherent superposition of photon number states with real expansion coefficients which


decay with n. Their similarities and differences become evident, when we compare the corresponding


photon distributions: In the case of the thermal phase state | ωp>=NpΣe-σn/2 |n>, we obtain: [[2


which decays exponentially with the photon number n and has a max. at at n-0 that is for the vacuum state


|0>. For the Riemann state the max. of [[2- [N(σ)[2/(n+1)^σ-[N(σ)[2 e-σln(n+1); Would be at n-0;


However, the photon statistics only decays polynomial with n, which is much slower than the exponential


decay. In this sense, we have replaced n by ln (n+1) in eq. (3.7), in agreement with the construction of the


Hamiltonian: HR=hω ln(n+1) σz.


The Cohen distribution functions


We have already emphasized the marginal properties of a phase space distribution function. An interesting


question arises about a general form of the distribution with the correct marginals. This problem has been


posed and solved by Cohen in 1966. The most general distribution P(q,p) with the proper marginals has




the form of a double Fourier transform of a function A(q' ,p') = e-ip' ξ/h Ψ* (ξ - ⌡ ′ q /2) Ψ(ξ+q /2) dξ,





multiplied by an arbitrary function Φ(q',p') satisfying the relations Φ(q',0) = Φ(0,p' )


In the literature devoted to optical processing of classical signals, the function A(q',p') is called the


Ambiguity function. Therefore, the Cohen joint distribution functions labeled by functions Φ are given by




the following equation PΦ(q,p)=F[Φ A[ := 1/(2πh)2 ⌡⌡ ei(p'q－q'p)/h Φ(q ,p ) A(q ,p ) dp dq , where by F we





have denoted a double Fourier transform. The Wigner distribution function is obtained by substituting


Φ(q',p') = 1 in the Cohen distribution functions formula. The distribution function is obtained for Φ(q'


,p)=exp[ -ip'q'/2h; Φ(q',p')=cos p'q'/2h leads to the Margenau-Hill.


The Kirkwood-Rihaczek distribution function


In 1933 Kirkwood introduced a phase space distribution which, according to his description, ''. . .differs but




little from the Wigner function " . The Kirkwood function is defined as follows: K(q,p) =1/2πh ⌡dξ ω(q) ei(ξ


-q)p/h ω*(ξ) = 1/2πh ω(q) e－ipq/h ω*(p) (5)





In 1968, this function was rediscovered by Rihaczek in the context of a signal energy distribution in time




and frequency. The real part of the Kirkwood-Rihaczek distribution KRe(q,p) = Re[ω(q) e－ipq/h ω*(p)





(6) is closely related to a quantum mechanical phase space distribution introduced by Margenau and Hill .




We clearly see that the Kirkwood-Rihaczek distribution has the correct marginal properties: ⌡ K(q,p) dp=


|ω(q)|2, ⌡ K(q,p) dq = 1/2πh |ω(p)|2 (7) Another condition easy to find is that the absolute square of K(q,p)





has the form similar to the Eq.(2), i.e. |K(q,p)|2 = 1/(2πh)2 |ω(q)|2|ω(p)|2, which indicates that K(q, p) is


a square-integrable function. The absolute square of the function, has a simple physical interpretation. It is


just proportional to the product of the probabilities in configuration and momentum representations. The


dynamical free evolution of a particle with mass m of the distribution function is given by the following


equation ∂tK(q, p, t) + p/m ∂q K(q, p, t) = ih/2m ∂2q K(q, p, t) which can be also written in a form: K(q, p,




t) = et(ih/2m ∂2q－p/m ∂q) K(q, p,0). We see from this formula, that the free evolution of the function is a





superposition of the free Schrodinger diffusion and of a classical boost to a moving frame. The distribution


function is bi-linear and has the correct marginal properties but, in contrast with the Wigner function, it is


not real nor does its free evolution satisfy the classical Liouville equation. As we shall see in detail later, it


is also not well-behaved under rotations of the (p,q) coordinate system, and this implies that such a


function can not be measured by tomography methods. The simplicity of the definition, Eq. (5), indicates


that it is relatively easy to evaluate the distribution function even for systems for which an analytical


formula of the Wigner function is not known,The best example of which is a Hydrogen atom. Lars


M.Johansen


Non-classical Properties of Coherent States


It is demonstrated that a weak measurement of the squared quadrature observable may yield negative


values for coherent states. This result cannot be reproduced by a classical theory where quadratures are


stochastic c-numbers. The real part of the weak value is a conditional moment of the Margenau-Hill


distribution. The non-classical term of coherent states can be associated with negative values of the


Margenau-Hill distribution. A more general type of weak measurement is considered, where the pointer


can be in an arbitrary state, pure or mixed. Harmonic oscillator coherent states were first investigated by


Schrodinger, who was looking for classical-like states. There are several ways in which coherent states are


the most classical of any pure state. They keep their shape, not spreading out as they move in the harmonic


oscillator potential . They minimize Heisenberg uncertainty relation, with equal uncertainty in both


quadratures; In this way, they are the closest possible quantum mechanical representation of a point in


phase space. The term coherent state was introduced by Glauber; He demonstrated that coherent states are


produced when an essentially classical current interacts with the radiation field . Aharonov demonstrated


that coherent states are the only pure states that produce independent output when split in two. Zurek


have demonstrated that coherent states are natural pointer states for a harmonic oscillator weakly coupled


to a thermal environment. Glauber and Sudarshan demonstrated that any density operator can be




expanded in terms of coherent states: ρ= ⌡ d2αP(α) |α)(α|. (1





The weight function P(α) is known as the P-distribution. Glauber defined non-classical states as those for


which the P-distribution fails to be a probability density. More specific, non-classical states have a Pdistribution


which is negative or more singular than a δfunction. It is the purpose of this part to


demonstrate that a quantum state may be non-classical even though the P-distribution is a probability


density, and that also coherent states display non-classical characteristics. In this part, we associate nonclassical


with the failure of the Margenau-Hill distribution to be a probability distribution. The Margenau-


Hill distribution yields correct marginal distributions, just as the Wigner distribution; But in contrast to


the Wigner distribution, it is negative for coherent states. We give an operational significance to


conditional moments of the Margenau-Hill distribution by demonstrating that they can be observed in


weak measurements. Weak measurements were proposed by Aharonov. Their suggestion was initially met


with criticism, but has since been confirmed in various ways. The results reported here are related to a


paper by Aharonov; which demonstrated that a weak measurement of kinetic energy of a particle in a


classic forbidden region might yield negative amounts. In the original von Neumann measurement scheme,


it was found that in order to distinguish different eigenvalues of the object, the pointer should be in a state


with small uncertainty in the pointer position. Aharonov proposed to define weak measurements by using


a pointer with a large pointer position uncertainty. Here, we abandon this condition. Instead, we assume


that the interaction between the pointer and the object is sufficiently weak. Thus, the pointer can be in an


arbitrary state, pure or mixed. We impose only one condition on the pointer, namely that the current


density should vanish. We consider an object and a pointer described by the density operators ρs and ρa,


respectively. Prior to the measurement interaction, the combined object plus pointer is assumed to be in a




product state ρ0= ρs ρa. We wish to perform a weak measurement of an arbitrary object ⊗ observable c. To





this end, we shall assume that the interaction part of the Hamiltonian has the form:




He=ǫ δ(t)c⊗p (2





Here includes two equal important parts:


-The interaction Hamiltonian in its essence is the same, except that we have introduced an interaction




strength ǫ . It is a specification of the interaction Hamiltonian proposed by von Neumann





- During the measurement interaction, the interaction part of the Hamiltonian dominates the time


evolution.


Payman Sheriff


The Hamiltonian Operator


H=- h2/2m d2ω/dx2 +Vx


Operators In Quantum Mechanics


With each measurable parameter in a physical system is a quantum mechanical operator. Such operators


arise because in quantum mechanics you are describing nature with waves (the wave function) rather than


with discrete particles whose motion and dynamics can be described with the deterministic equations of


Newtonian physics. Part of the development of quantum mechanics is the establishment of the operators


associated with the parameters needed to describe the system. It is part of the basic structure of quantum


mechanics that functions of position are unchanged in the Schrodinger equation, while momenta take the


form of spatial derivatives. The Hamiltonian operator contains both time and space derivatives.


To obtain specific values for energy, you operate on the wave function with the quantum mechanical


operator associated with energy, which is called the Hamiltonian. The operation of the Hamiltonian on the


wave function is the Schrodinger equation. Solutions exist for the time-independent Schrodinger equation


only for certain values of energy, and these values are called "eigenvalues" of energy. While the energy


eigenvalues may be discrete for small values of energy, they usually become continuous at high enough


energies because the system can no longer exist as a bound state. For a more realistic harmonic oscillator


potential (perhaps representing a diatomic molecule), the energy eigenvalues get closer and closer


together as it approaches the dissociation energy. The energy levels after dissociation can take the


continuous values associated with free particles.


Corresponding to each eigenvalue is an eigenfunction. The solution to the Schrodinger equation for a given


energy involves also finding the specific function which describes that energy state. The eigenvalue concept


is not limited to energy. When applied to a general operator Q, it can take the form Qop ωi=qi ωi; If the


function ωi is an eigenfunction for that operator. The eigenvalues qi may be discrete, and in such cases we


can say that the physical variable is "quantized" and that the index i plays the role of a "quantum number"


which characterizes that state.


If y is the wave-function for a physical system at an initial time and the system is free of external


interactions, then the evolution in time of the wave-function is given by: Hω=ih ∂ω/∂t where H is the


Hamiltonian operator formed from the classical Hamiltonian by substituting for the classical observables


their corresponding quantum mechanical operators. The role of the Hamiltonian in both space and time is


contained in the Schrodinger equation.


Representations In Probability/Phase Space:


We present in this part a brief review of the concept of density operator. For a pure state |ω>, the density


operator is defined by ρ=|ω><ω|. If instead one is uncertain about the state of the system ,and we know


that there is a probability Pψ for the system to be in state <ω|, the density operatoris defined by ρ=ΣP|


ω><ω| . (6 The utility of the above definitions can be grasped by writing down,in terms of ρ,the average


value of an observable A A=ΣP<ω|A|ω>=Tr(ρA) (7 which represents a unified way of expressing the


average value, valid both for a pure state and a statistical mixture. From the definition it follows


immediately that Trρ=ΣPω=1. Also,it is easy to see that ρ is Hermitian, and therefore can be diagonal. If |


φi> are the eigenstates of ρ, then ρ=ΣP|φi><φi|, < φi|φj>=δij, which implies that ρ2=ΣP2|φi><φi|




Trρ2=ΣP2≤. For a pure state, Trρ2=1, while for a mixture Trρ2<1. In terms of the ⇒ Fock basis, ρ=Σρnm|





n>


electromagnetic field, a basis for the combined system can be obtained by forming the tensor product of


the bases corresponding to each of the two systems. The tensor product of two states |ωA> and |ωF>


corresponding respectively to the systems A and F is written as |ωA> |ωF), corresponding to the density




operator ⊗ ρ=ρA ρF. ⊗ The average of expressions involving products of operators acting on A and on F





separately can be written as (AF)=Tr(ρA)Tr(ρF).


The general state of the combined system will not have the form of a tensor product, but can be expressed


as a linear combination of tensor product states. A state which cannot be factorized is called an entangled


state. States may also be represented by phase space distributions,which allow quantummechanical


averages of operators to be expressed as classical-like integrations over phase space of c-numbers


corresponding to the operators.


Luiz Davidovich


The phase qubit


When the JJ is fed by a dc current i produced by an external source, the current conservation in the circuit


can be written by expressing the dc and ac Josephson laws: i=i0 sinδ+dQ/dt=i0sinδ+CdV/dt=i0sinδ+hC/2e


d2δ/dt2 This equation describes the acceleration of δ produced by the sum of two ≪forces≫: A. Proportional


to i0sinδ, is the non-linear restoring force of the Josephson resonator. B. Proportional to i, is an applied


force imposed by the source of current. The sum of these forces derives from a potential proportional to


-i0cosδ-iδ. Comparing with the Hamiltonian of the open circuit JJ, we immediately get the current driven


Hamiltonian: H(i)=2e2/C p2- h/2e(iδ+i0cosδ); which rules the dynamics of a quantum effective particle


with conjugate coordinates δ and p in a washboard potential.


State selective detection by tunnel effect across barrier:


By increasing i, we lower the barrier between two wells until we reach a configuration where state 1 has an


energy just below the potential maximum. If the qubit is in state 1, the effective particle escapes by


tunneling through the barrier and δ undergoes an accelerated motion down the washboard. When dδ/dt


exceeds a critical value, the junction transits to the normal phase and a voltage appears between its ports,


which gives a detection signal selectively detecting the qubit in state 1. The state 0 remains stable in the


well and undetected by this effect. In order to selectively detect 0, we can transfer the system from 0 to 1 by


a resonant microwave pulse and then detect state 1.


Detecting the phase qubit When the qubit transits from one well to the other, δ changes by about π, which


corresponds to a change of about i0 of the current in the qubit circuit and to a flux variation of about


Li0~φ0. This sudden flux jump of about one flux quantum is detected by a SQUID inductively coupled to


the qubit (a voltage appears between the ports of the SQUID when the qubit transits from one well to the


other). The flux controlling circuit (flux bias) is used to finely tune the qubit frequency and to bring it


suddenly to the threshold of selective detection of its quantum states at the time of measurement.


Conditions to realize a superconducting qubit We have described a JJ as a quantum system. Its variables p


and δ, defined as macroscopic quantities pertaining to a system made of a large number of particles, are


non-commuting operators, obeying to an evolution equation ruled by a quantum Hamiltonian. The phase


defined modulo 2π is consistent with the discreteness of p which must assume integer values. In the


systems described below (phase qubits), p will present large fluctuations and its discrete character will not


be essential (this is different in charge qubits, not considered here). We will thus describe p and δ as


continuous variables. The states of this quantum system have discrete energies and it is possible to isolate


the transition between the ground state |0> and the first excited state |1>, which is non-degenerate with


other transitions because of the JJ non-linearity. Restricting ourselves to exciting the 0 1 transition with




micowave pulses, we can force the system to evolve in the 0-1 subspace, thus realizing → a qubit. To get an





operational system, we should include one (or several JJ’s) in an electrical circuit in order to realize the


following operations:


-Frequency tuning of the qubit


-Coupling of the qubit to microwaves in order to manipulate its state


-Coupling qubits with each other or with a microwave or radio frequency resonator to realize quantum


gates


-Detection of the qubit with a state selective device


The quantum feedback


Quantum feedback can be implemented in Cavity QED to prepare and stabilize Fock states against quantum


jumps. Two methods have been tried: The first, the actuator is a classical source injecting small pulses of


coherent radiation in the cavity. The corrections of n = ・}1 quantum jumps are achieved by incremental


steps made of pulses with positive or negative amplitudes, many pulses of decreasing intensity being


required to make the field converge back into a Fock state. The transient off-diagonal density matrix


elements generated in the process are destroyed by the quantum collapses induced by the dispersive probe


atoms. The process takes a few tens of milliseconds, making the procedure relatively slow and impossible


to implement for n>4. In the second method, the actuators are single resonant atoms able to inject or


subtract a photon in one step, making the procedure more reactive and faster. Fock states up to n=7 have


been prepared and protected in this way. Extending the method to protect other kinds of states, such as


Schrodinger cat states is an interesting field of investigation.


Applying quantum feedback to the stabilization of Fock states


Fock states are interesting examples of non-classical states; They are fragile and lose their non-classicality


in time scaling as 1/n. The preparation by projective measurement is random. The crucial part here is to


consider:


1 Would it be possible to prepare them in a deterministic way by using a quantum feedback procedure?


2 Can these procedures protect them against quantum jumps (loss or gain of photons)?


Fock state reconstruction: Max Ent vs Max Like


We prepare an|n> state by running a sequence of POVMs realized with probe qubits atoms. We then


displace it by -αi (different values distributed on lines passing by phase space origin). Then we measure


sigma x or sigma y on ~10 atoms with a phase shift φ0~π/2 per photon. We average over ~100 to 200


realization for each αi. The same data are used to obtain ρ by Max Ent and by Max Like. For Max Ent we


average the difference of count rates in j=1 and j=0 for each αi value and we look for the optimal ρ


reproducing these averages under the exponential form. For Max Like, we use the first 3 atoms out of the


about 10 crossing C after the field displacement and we measure for each αi the frequencies fi(p) for


detecting 3-p atoms in j=1 and p in j=0. This we neither exploit atom count averages, nor atom correlations


on a single realization. Single atom prepares Schrodinger cat state 1. Coherent field is prepared in C 2.


Single atom is prepared in R1 in a superposition of state e and g 3. Atom shifts the field phase in two


opposite directions as it pass through C: Superposition leads to entanglement in typical Schrodinger cat




situation 4. Atomic states mixed again in R2 maintains cat's ambiguity: |↑ ,e>+| ↓,g> (|↑ >+|↓>) |e>+(|


↑>-|↓>) |g> Detecting atom in e or g projects field into+or- cat state superposition.





Steps in preparation and reconstruction a cat Initial state: |g>


R1:π/2 phase shift Injecting a coherent field s Displacing field by -α R2:π/2 phase shift


Phase-shift dφ(n)/dn (in units of π) versus photon number Taking into account light-shifts non-linearity,


We choose a small Delta value to get a large phase-shift per photon. The non-linear terms in n in the


expansion of the atom-field states make phase-shift per photon n-dependent: about π for n = 0, it is ~ 0.5π


for n=5.


Effects of the non-linear phase shift


1. The cat prepared by the 1st atom would be distorted


2. It Modifies the direct reconstruction procedure


Reconstructing Schrodinger cat states by Max Ent


Since the measured observables are ≪close≫ to parity, they are ≪almost binary≫ and the Max Ent


method applies well. We have perform the NG= 500 field displacements and measure the


expectation values of the corresponding errors affected generalized parity operators (with one


phase φr). Since the measurements do not change n, we use in each realization the information


provided by~10 atoms which reduces the number of realizations necessary per displacement. The


searched ρME is the exponential of a linear combination of 500 Gi(errors) operators. The


coefficients of this combination are 500 Lagrange multipliers. These multipliers are determined by


a least square fit minimizing the X2 sum given in the discussion of the Max Ent method . The


theoretical curves superimposed to the experimental peak points are fits obtained with the values


of these multipliers. The agreement between the experiments and the fits is quite good. Once ρME


has been determined, we compute the true W. We thus go from W(gen)(errors), given by the direct


data, to the true W by an indirect route.


The Schrodinger cat decoherence


The cavity mode gets entangled with the reservoir. This entanglement is responsible for


decoherence. As soon as the two environment states get orthogonal, there is a ≪which path≫


information in the environment that lifts the quantum ambiguity of the state superposition and


destroys the quantum coherence. The field density operator at time t is obtained by tracing over


the environment, as long as the two field components remain orthogonal to some extent.


Preparing and reconstructing a Schrodinger cat state


|ω>=1/√2 [|s>+|-s>[ρcat=(|s>+|-s>)(<-s|+|s><-s|+|s>


The first and second terms are the peak of the two hills on the phase space map and the third and forth are


the peak of the mountain on the same map. Superposing two coherent states with opposite phases leads us


to the statistical mixture ρ melange=|s><-s| /2 The |s><-s|,|-s>


operator correspond to the non-gaussian oscillations of its Wigner function. Decoherence destroys these


oscillations and reduces W to a sum of functions associated to the coherent states |s> et |-s> transforming


the cat into a statistical mixture.


The Schrodinger cat is produced by the back-action of a parity measurement on the field phase.




|ﾟ>=1/2[|ﾟ>+|-ﾟ>[+1/2[|ﾟ>-|-ﾟ>[; The first part ξnpair Cn|n> would be the even part and the second





ξnimpair Cn|n> the odd part. |ωpair>=1/N[|s>+|-s>[ , |ωimpair>=1/N'[|s>-|-s>[


1. Injection of a coherent field in C: coupling to a classical source


2. Parity measurement: Interaction with an atom with φ0=π


Serge Haroche


Rydberg atoms




Rydberg atoms in states e and g behave as qubits, They are prepared in B in state e and cross one at a →





time the high-Q cavity C where they are coupled to a field mode. The atom field system evolution is ruled


by the Jaynes-Cummings hamiltonian; A microwave pulse applied in R1 prepares each atom in a


superposition of e and g, After C, a second pulse applied in R2 , maps the measurement direction of the


qubit along the Oz axis of the Bloch sphere, before detection of the qubit by selective field ionization in an


electric field in D. The R1-R2 combination constitutes a Ramsey interferometer. This set-up has been used


to entangle atoms, realize quantum gates, count photons non-destructively, reconstruct non classical states


of the field and demonstrate quantum feedback procedure.


Cross sections for electron-impact excitation of krypton from the levels of 4p6,4 p5 5s, 4p5 5p


Electron collision processes with the rare gases have been a topic of continuous interest for both


fundamental and practical reasons. They help us to understand basic electron-atom interactions and have


applications to many fields such as gas lasers, plasma processing, and lighting technology, etc. In addition,


electron-impact excitation cross sections are also very important in calculating the width and shift of


spectral lines in a method of quantum mechanics. Recently, Milosavljevic and Djenize measured the


electron impact widths of neutral krypton in transitions of 5s-5p and 5s-6p. They calculated the widths by


using a semi-classical method. More accurate treatment of the widths and shifts caused by electron impact


should use a method of quantum mechanics. The recent interest in this field has attracted a lot of


researchers to study the electron impact excitation cross sections of Kr, both in theory and experiment.


Fel’tsan measured the optical emission cross sections for transitions of the type 4p5 5p-4p5 5s. Cross


sections for only a few transitions into the 4p5 5p levels were measured from the ground level. Trajmar


measured inelastic differential cross sections for excitation into a number of higher levels from the ground


level. They obtained the integral cross sections by integrating the DCS over the scattering angle.


Bogdanova and Yurgenson used a pulsed electron beam to measure the excitation cross sections of 4p5 5p


levels from the ground level, attempting to eliminate the cascade contribution. Mityureva and Kolokolov


measured the electron-impact excitation cross sections of Kr from the metastable level J=2 to 4p5 5p levels.


Guo measured the DCS ratios for low-energy electron-impact excitation of the 4p5 5s levels. Theoretical


calculations have also been given to show the relativistic effects. Soon thereafter, Guo measured the DCSs


for the excitation of 4p5 5s,4 p5 5p,4 p5 4d, and 4p5 6s configurations. They used high-resolution electron


energy-loss spectroscopy to obtain spectral intensities for the excitation. Theoretical investigations have


also been carried out using the R-matrix method and unitarized first-order many-body theory. Chilton


have measured the electron-impact excitation cross sections from the ground level of Kr by means of the


optical method over a range of incident energies between onset and 250 eV. Recently, Jung measured the


excitation cross sections out of the metastable levels of Kr into the levels of 4p5 5p configuration. Their


results showed that the peak excitation cross sections out of the two individual 4p5 5s metastable levels are


smaller than previous experimental data reported in the literature by one to two orders of magnitude.


Most researches have been concentrated on elastic and inelastic cross sections to the lowest four levels of


Kr 4p5 5s configuration; Hyman #calculated the electron impact excitation of metastable levels of atomic


Kr using Born approximation #in the 1979; Meneses calculated the differential and integrated cross


sections for the electron-impact excitation of the levels of 4p5 5s configuration at incident energies of 20,


30, 50, 60, and 100 eV. Kaur considered the excitation cross sections of Kr using a relativistic distortedwave


approximation. They obtained the differential and total cross sections for incident electrons in


energy range from 15 to 100 eV. Yet they did not give results for separate levels. Fontes calculated the


electron-impact for metastable levels of Kr. Previous work before employed a single 4p5 5s configuration


to describe the lowestlying excited levels. His work showed, however, that 4p5 4d configuration plays a


role in calculating the DCSs. Bartschat and Grum-Grzhimailo investigated the electron-impact excitation of


4p5 5s states at 15 eV using non-perturbative close-coupling-type models and a first-order perturbative


distorted-wave approach. Their results showed that the results of close-coupling calculation agree better


with the experiment than those of distorted wave method. Later, Dasgupta calculated the electron-impact


excitation of Kr from the ground level and 4p5 5sJ=0, 2 metastable states to the 4p5 5s and 4p5 5p


manifolds using semirelativistic Breit-Pauli R-matrix method and first-order distorted-wave


approximation. The recent accurate experimental results obtained by Jung give us an excellent opportunity


to test the theory; When Jung compared their experiment with the most recent theoretical results#, they


pointed out that there is a potential problem with convergence of the theoretical calculations. All these


show that theoretical calculations of the cross sections of Kr are challenging because of the complexity of


the atomic structure of Kr and the complexity of the coupling of orbital and spin angular momenta of the


outer electron with those of the core.


Results


First, we check the convergence of cross sections on the number of partial waves; The speed of


convergence is different for different transitions. As an example the trend of convergence for excitation


cross sections of transition 1s5 2p6 with the number of partial waves. It should be noted that Jung


measured the apparent cross sections which include both direct electron excitation into the level of interest


and an additional cascade contribution from excitation into higher levels that decay into the level of


interest. They estimated the cascade corrections will reduce the apparent cross sections by less than 10%


for most transitions. With the increasing of the scattered electron energy, the convergence becomes much


slower, The higher the scattered electron energy is, the slower the cross section converges. After having


checked the convergence of the cross sections, we turn to the discussion of the elastic scattering cross


sections and excitation cross sections. Considering the elastic scattering cross sections for the ground level,


#a#, and the two metastable levels 1s5 and 1s3, respectively, the variational trend of the cross sections


with scattered electron energy are different for the ground level and two metastable levels. For the ground


level, elastic cross sections increase with scattered electron energy from zero. Near 22 eV, the cross


sections show some structures and then continue to increase. For the two metastable levels, the cross


sections near their thresholds are very large and then decrease rapidly with scattered electron energy.


With the increasing of the scattered electron energy, our calculated cross sections are larger than their


results; In addition, our results show resonance structures in the energy range of 10–5 eV, which did not


appear in the results obtained by Dasgupta.


The experimental data measured by Trajmar are smaller than our theoretical cross sections, Note that the


two experimental data sets have substantial discrepancies, therefore it is not easy to evaluate the quality of


different theoretical results. Recently, Jung measured the excitation cross sections out of the metastable


levels of Kr into the levels of the 4p5 5p configuration. Before they published their work, experimental data


obtained by different groups differed considerably and are much larger than the theoretical results ,#


Therefore the reliable experimental data by Jung # should give us a good chance to test the theory. In


general, the theoretical cross sections are a little smaller than the experimental data. However, as


mentioned above, Jung measured the apparent cross sections which include both direct electron excitation


and an additional cascade contribution. The cascade corrections will reduce the apparent cross sections.


For the transition of 1s3-2p2, both theory and experiment show similar variational trend, in which cross




sections decrease fast with electron energy. The theory predicts the peak cross section to be 1.1*10－15


cm2, while the measured peak cross section is 1.75*10－15 cm2. For the transition of 1s5-2p2, however, the





overall structure predicted by theory is different from the measured. The theory shows a broad structure


and the cross sections decrease slow with electron energy, while the experiment measured a narrow


structure and the cross sections decrease fast with energy. The results of BP15 obtained by Dasgupta


predicted the same variational trend of cross section with our results. Besides the cross sections for the six


transitions, Jung also measured cross sections at 3.5 eV for other transitions out of the metastable levels.


As they discussed in their work, the shapes of the excitation cross sections out of the metastable levels of


Kr as a function of electron energy fall into two main categories. For core preserving, dipole allowed


excitations, there is broad energy dependence with a peak around 6 eV. The other shape is for the corepreserving,


dipole-forbidden excitations which have a sharp peak at 3 eV. Therefore the cross sections at


3.5 eV should be very close to the peak. For most transitions, the theoretical values are smaller than


experiment, Yet they are bigger than experiment for transitions of 1s5 2p3,1 s5 2p5,1 s5 2p6, and 1s5 2p10.




The theoretical values are within the error bars except for transition of 1s5 2p5. As → we know, for some





atoms or atomic ions, inclusion of more CI could reduce the excitation cross sections; For instance, Griffin


studied the electron impact excitation of Fe VIII using the BP R-matrix method. Their results show that


inclusion of more CI can result in substantial reduction of excitation cross section. If Dasgupta have


included the same number of partial waves in their BP51 and BP15 calculations, then it is easy to


understand why their results of BP51 are smaller than those of BP15 in most energy regions. If they include


more contribution of partial waves, then the results of BP51 should increase. Then the results of BP51 will


agree better with the experiment. Therefore, to obtain accurate excitation cross section, it is important to


take into account of all factors such as adequate CI, enough number of partial waves, and relativistic


effects. One can see that the cross sections out of the metastable levels are much larger than the


corresponding results from the ground level. This is in agreement with the experimental results that the


peak cross sections are 10–1600 times larger than the corresponding cross sections out of the ground level.




For example, the peak cross section for transition of 1s3 2p4 is 5.8*10－15 cm2, which is about 1000 times





larger than the result from the ground level. The other two levels 1s4 and 1s2 of 4p5 5s configuration are


dipole-allowed to the ground level. As far as we know, there are no experimental data for these


transitions. It is believed that the excitation cross sections of these transitions can be measured in the


future. Some transitions have large cross sections, such as 1s4 2p8,1 s4 2p7, and 1s4 2p6. They have peak




cross sections of 4.5* 10－15, 2.9*10－15, and 1.3*10－15 cm2, respectively. For the transitions of 1s2 2p4,1


s2 2p3, and 1s2 2p2, the peaks are 1.75 *10－15, 1.7*10－15, and 5.4*10－15 cm2, respectively. The large





cross sections for these transitions should be capable of being measured if one can control the short


lifetime levels in the experiment. Excitation cross sections for transitions among the levels of 4p5 5s


configuration: 1s5-1s4,1 s5-1s3, 1s5-1s2,1 s4-1s3,1 s4-1s2, and 1s3-1s2, There is a reasonable agreement with


the theoretical results obtained by Dasgupta using the R-matrix calculation; However, we predict a strong


resonance near the threshold. This might be due to the bigger wavefunction expansion in our target states.


To summarize, we have investigated the electron-impact excitation cross sections at low electron energies


using a fully relativistic R-matrix method. Special attention has been paid to ensure the convergence of


final results. The predicted overall structures agree well with a recent experiment except for the transition


of 1s5-2p2. Further, the magnitude of theoretical cross sections are in good agreement with the


experimental data after shifting the position of the electron energy. Present results eliminated the


significant discrepancies between theory and past experimental work before Jung. The experimental cross


sections published before Jung are at least an order of magnitude larger than both our theoretical results


and the experimental data of Jung for transitions out of the metastable levels. Different theoretical work,


however, predicted the same order of magnitude for the excitation cross sections.


Jiaolong Zeng,Jianhua Wu,Fengtao Jin,Gang Zhao,and Jianmin Yuan


National Astronomical Observatories, Chinese Academy of Sciences,Department of Applied Physics,


National University of Defense


85Rb nF7/2 Rydberg states using purely optical detection


This work demonstrates the first frequency measurements of rubidium Rydberg levels using a purely


optical detection scheme. The Rydberg states are excited in a heated Rb vapour compartment and Doppler


free signals are detected via purely optical means. All of the frequency measurements are made using a


wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find


that the measured levels have a very high frequency stability, and are esp. robust to electric fields. The


apparatus has allowed measurements of the states to an accuracy of 8.05MHz. The new measurements are


analysed by extracting the modified Rydberg-Ritz series parameters. The accurate measurement of highly


excited Rydberg level energies in the alkali atoms plays an important role in improving the accuracy of


atomic models. In most Rydberg spectroscopy experiments the atoms are detected via field ionization.


However, in this study we use a method of purely optical detection in an ordinary vapour compartment. A


vapour compartment is a convenient and straightforward solution for finding Rydberg levels, that could


potentially permit rapid advances in Rydberg spectroscopy. This technique presents a method of finding


Rydberg states quickly, with a large signal to noise ratio and an apparent insensitivity to electric fields,


which makes it particularly suited to studying high ℓ Rydberg states with large polarisabilities. It is


therefore important to verify the ability to perform precision spectroscopy in such a setup. Although there


is a large body of work on precision interval and fine structure measurements of the different rubidium


Rydberg series, measurements of the energies of these levels are more difficult to carry out, and are


therefore mainly limited to the lower ℓ states. It appears that measurements of the 85Rb nF series have


only been made once by Johansson in 1961 for n=4-8. However, as new tools are now available in laser


spectroscopy, such as the optical frequency-comb technique, it is interesting to return to such


measurements. In this work we wanted to demonstrate that precision laser spectroscopy measurements of


Rydberg states could be effectively made using purely optical detection with a vapour compartment


sample. During the experiment nF7/2 Rydberg states between n=33-100 were excited in 85Rb using a three


step laser excitation scheme. The three step level system consists of a 780.24nm transition 5S1/2 F=3 to


5P3/2 F=4 , a 775.98nm transition 5P3/2 F=4 to 5D5/2 F=5 and finally a 1260nm transition 5D5/2 to


nF7/2. To observe excitations to Rydberg states, the first two step lasers are fixed at their respective


transition frequencies and the absorption of the 780nm laser is monitored whilst the 1260nm laser is


swept across the transition. This technique involves the quantum amplification effect; due to the large


differences in decay lifetimes of the three excited states of the system, the excitation of a single atom by the


third step laser will hinder many absorption-emission cycles on the second step transition. This in turn


will hinder a large amount of cycles on the strong first step cycling transition which can cause a


measurable decrease in the first step absorption. Optical pumping is applied on all three steps with σ+


polarised light. Optical pumping on the first step transition ensures the second step laser only excites to


the mF=5 sublevel of the 5D5/2 F=5 hyperfine state. Therefore the third step laser can only excite a single


transition, the 5D5/2 F=5 to nF7/2 F=6. Having a well defined pathway to the Rydberg states is




important because of the relatively small 10MHz splitting of the 5D5/2 level. In the ∼ experimental setup





used for measuring Rydberg state frequencies, the first step is phase locked to a self-referenced optical


frequency comb and the second step is frequency locked using a separate rubidium reference


compartment. The first and third step laser light is transported to the comb and wavemeter using single


mode optical fibres. The first two steps are circularly polarised using quarter wave plates, and the third


step laser is circularly polarised using a broadband Fresnel r homb. All three lasers are focused to a beam


waist of 100m inside the compartment, which increases the available third step laser power density. The




vapour compartment is heated to a temperature of 60 C to ◦ increase the atomic density in the





compartment and to therefore enhance the first step absorption. Before adding the third step laser to the


system, we verified that efficient optical pumping was occurring on the first step transition by scanning


the second step laser across the 5D5/2 manifold, with the first step laser locked. The first step laser selects


only zero velocity atoms, and therefore the second step laser scan showed a single and symmetric Doppler


free peak in the first step absorption. This single peak, with a FWHM of 11.5MHz, corresponds to the


reduced absorption of the first step laser as the second step laser excites the 5P3/2 F=4 to 5D5/2 F=5


transition. By adding a small frequency modulation to the second step laser, and monitoring the first step


absorption via a lock-in amplifier, an error signal is extracted. Using our frequency comb we verified that


this second step frequency lock was repeatable to an accuracy of 1MHz on a daily basis. We found that it is


possible to detect lower n states with a very good signal to noise ratio. Therefore to verify the line shape of


the detected third step transitions the photo-diode was monitored directly on an oscilloscope during a fast


scan a cross the 5D5/2 to 33F7/2 transition. The scan was carried out and the frequency axis was calibrated


using Fabry-Perot resonator at 1268nm. To improve the detection sensitivity of third step transitions, a


frequency modulation is added to the third step laser via the injection current, with a modulation


amplitude of 15MHz and frequency of 6kHz. Detection of the first step absorption is carried out at the first


harmonic using a lock-in amplifier with a time constant of 1 second. The free running third step laser is


scanned by applying a linear voltage ramp to the laser Piezo using computer software and a Digital to


Analogue converter interface. The free running laser stability was measured as less than 1MHz over one


second, which is sufficient to carry out slow scans across the Rydberg transitions. We found that the




wavemeter stability stayed below 2MHz for times of 1000s. We also ∼ found that the wavemeter was able





to maintain accuracy of 6.2MHz across the 1254nm1268nm range, when regularly calibrated at 780nm.


Therefore, throughout this experiment the wavemeter is calibrated every 30 minutes to the comb-locked


first step laser, to supply a direct frequency link with the comb. L A M Johnson, H O Majeed, B Sanguinetti,


Th Becker+B T H Varcoe


The Results


The third step transition absolute frequencies were collected for n=33-50 in intervals of one, and from


n=50-100 in larger intervals of five. Fitting to the transition data was done using a Wahlquist first


derivative function. We found that the line widths of the detected third step transitions prevented


resolving the nF7/2 and nF5/2 fine structure splitting in this experiment, which for n=33 to100 is 4.35MHz


to 0.16MHz respectively. However, the use of σ+ light for the third step laser ensures only the nF7/2 level


is excited in this case. Ten traces were taken for each state in order to understand the repeatability of the


measurements. It was found that on average the standard deviation of each set of ten scans was 2MHz with


an accuracy limited by the short term drift of the wavemeter during the time taken to collect each set. To


study potential frequency offsets of the transitions caused by power shifts, pressure shifts or Zeeman


shifts we took measurements of both high and low n states with a range of different first, second and third


step laser powers, compartment temperatures and opposite circular polarisations respectively. We also


checked for errors from time delays in the data acquisition process by scanning the third step laser across


the same transition in opposing directions. No repeatable shifts of the transition frequencies were found


with increased laser powers or compartment temperature and therefore potential offsets from these


effects were not added as corrections but instead the spread of measurements were used to estimate a


maximum error in each individual case. Neither Zeeman shifts nor time delay errors were detectable


within the short term accuracy of the wavemeter and therefore these effects were assumed to give a


negligible contribution to the uncertainty. To measure potential DC Stark shifts of the Rydberg states we




applied electric fields of up to 30Vcm－1 across the vapour compartment and checked for frequency shifts





of both the 33F7/2and 100F7/2 transitions. In each case there was no measurable deviation. This


unexpected observation was also made in references when detecting Rydberg states in a compartment. A


screening of the Rydberg atoms inside the compartment seems to be present, which makes them resilient


to electric fields. This is a very positive effect as it allows precision spectroscopy of high ℓ states with no DC


shifts.


Cosmic-Ray Neutrons near the Earth


Neutrons of about 1-keV energy were measured by surrounding the BF3 counters with cadmium-coated


polyethylene cylinders. The flux near the earth was found from the difference in count rates of bare and


cadmiuim-covered detectors and agrees with the result of a diffusion calculation. The neutron energy


spectrum was investigated at the 45- and 1175fit levels by counting with varying thicknesses of


polyethylene surrounding the detectors, but little difference between the spectra for the two levels was


discernible.


The flux of cosmic-ray neutrons has been measured extensively beyond the earth's atmosphere.


Surprisingly, no measurements have been made in the vicinity of the earth's surface. Such data are of


importance in correlating cosmic-ray neutron data on the ground with measurements made in the air.


They are useful in environmental studies such as the investigation of cosmic-ray effects on earth. Previous


measurements have established that the free neutrons present in the atmosphere are produced by


interactions of the primary radiation, composed largely of protons, with nitrogen and oxygen nuclei. Some


fast neutrons with energies of 1 BeV or more are produced by direct interactions or star events, but the


most important production mechanism might be the evaporation process from excited nuclei. The rate of


production of neutrons by the primary particles has been measured at ground level in various elements by


numerous experiments, and is found to vary with atomic weight. Upon production the evaporation


neutrons begin to lose energy by coherent collisions. In the measurements to be described below we have


attempted to verify the differences between the slow-neutron distribution and the distribution of neutrons


with energies around 1 keV which we refer to them as fast neutrons. BF3 detectors were mounted on a


small elevator in a 1500-ft television antenna tower to measure the neutron altitude distribution. The


detector tubes were standard BF3 counters, 2 inch in diameter by 19.5 long, containing 96 percent enriched


boron tri-fluoride gas at 40 cm of Hg pressure. The anodes were tungsten wires, 0.002 inch in diameter


with active length of 12 in. Fast-Neutron Measurements The data for the fast region was obtained by


placing a 1-in thick cylinder of ploy-ethylene around the detecting tubes and covering this with a cadmium


sheath to stop neutrons below 1 eV energy from entering the cylinder. One inch of polyethylene gave a


max. count rate of neutrons of about 750-eV. Runs of 15 min were made at 150-ft intervals up the tower.


The data for each run were corrected for atmospheric pressure and humidity variaitions on different days


and for the count rates obtained with Ra-Be source. Changes in the primary cosmic-ray flux from day to


day during the runs, as determined from neutron-monitor data kindly supplied by Prof. J.A.


Simpson/university of Chicago were found to be significant.


D. Hendrick And R. D.Edge University of South Carolina


Stark Ionization of High-Lying States of Sodium


By using stepwise excitation in atomic beam, we have excited slow-moving atoms to pure


high-lying quantum states at densities low enough to avoid loss by collision. The atoms were detected with


high efficiency by stark ionization. Results are presented of a study of the threshold field for ionization for


s states of sodium with principal quantum number n from 37 to 25. We report the production of highly


excited sodium atoms in pure quantum states, and observations on their ionization threshold in an electric


field. There has recently been a growing interest in the properties of high-lying states of atoms near the


ionization limit. These states, which are hydrogenic in their essence, are characterized by very long


lifetimes, large polarizabilities and Stark shifts, low binding energies [2n2[-1 a.u. and are large


radii(proportional to n2a.u. They are so fragile and large that until recently the only data on atoms in pure


high-lying quantum states have come from radio astronomical observations of the recombination lines in


interstellar hydrogen. Measurements on lifetimes in sodium s and d states with n up to 13 using laser


excitation in a gas compartment have been reported by Gallagher, Eldstein and Hill. Bayfield and Koch


created a beam of hydrogen with n in the range of 63 to 69 by charge exchange of a fast proton beam with


xenon. Cook, West, Dunning and Stebbings have excited high-lying levels of rare gases. In our work, we


have used an atomic beam to reduce collisional ionization which can limit the levels observable in a


compartment. By using tunable lasers, we have been able to excite selectively individual quantum states, in


contrast to collisional techniques which generally excite a wide distribution of states. Sodium atoms in an


atomic beam were excited stepwise by two pulsed dye lasers pumped by a common nitrogen laser. The first




dye laser saturated the D1 line (~5992 A ｰ), creating a large population in the 32 Ps/2 state, while the


second (~4200 A ｰ) caused transitions from the p state to high-lying s or d states. The lasers both had a





spectral width of 1 cm-1, a pulse length 5 nsec, and a peak power of 1 kW. We first detected atoms in highlying




levels by observing resonance fluorescence at the ~4200 A ｰline from the high level. A photon





multiplier tube detected the light emitted at right angles to both the atomic beam and the incident lasers.


We were able to observe s and d states from n=15 to about 29, not higher levels because of rapidly


decreasing signal strength. The intensity loss was due to two factors, each varying as n-3: The decreasing


transition moment, and the loss of signal which occurs when radiative lifetime becomes longer than the


time for an atom to pass out of the observation region, about 11μsec. For n greater than 23 the excited


atoms were detected by direct ionization in an applied field. In addition to avoiding the problem of signal


loss due to long radiative lifetime, the method provides close to 100% detection efficiency and very low


back-ground. The laser beams intersected the atomic beam between electric fields plates. A pulsed ionizing


electric field was applied after laser excitation and the resulting ions were observed with a channel


electron multiplier. As expected, for reasons explained below, the approximate ionization field for a state


with principal quantum number n was [16n4[-1 a.u.


For a typical atomic-beam density of 10^8 cm-3 and an interaction region of .02 cm3, we observed the


equivalent of approximately 10^4 ions/pulse for n=29. To confirm the identity of excited levels as s or d,


we used the fact that optical selection rules for stepwise two-photon processes are strongly affected by


nuclear coupling in the intermediate state. The electron-nuclear hyperfine interaction mixes states of


different amounts of mJ and mI, (where hJ and hI are the electronic and nuclear angular moment,


respectively), to create a state of total angular momentum hF. This tends to scramble together states of


likely amounts of mj and mi satisfying mJ+mI=mF. The result would be that absorption of two photons


circularly polarized in the same sense gives rise to both s p s and s p d transitions. In contrast, if such


photons are absorbed successively in a time interval which is short compared to the hyperfine period of the


intermediate state, the electron does not have sufficient time to process about the nucleus to a new spatial


orientation before it absorbs the second photon. In this situation the electric dipole selection rules for twostep


process are the same as those for an atom with spin +3/2. In our experiment we found, consequently,


that when the lasers were circularly polarized, the population of the s levels was a sensitive function of the


delay between the pulses. When the two pulses excited the sodium in rapid succession(relatively a short


time delay compared to the hyperphine period in the 3P3/2 state), the transition rate to the s was


suppressed, wheraes the rate to a d state was essentially unchanged. When the second pulse was delayed,


the s transition rate became far less affected by circular polarization of the lasers. The energy levels of


sodium have the form Wn=[2(n-Δ)2[-1, where the quantum defect Δ depends on the orbital angular


momentum. The high-lying levels form a slowly varying pattern. The term spacing is ΔWn=(n*)-3; For


n=29, ΔW29=9.3 cm-1. The states ns and (n1)d form a pair separated by about .35 of the term spacing.


Individual levels were resolved for n=24 to n=33. The laser frequency was determined by a Spex 14018


monochromator to an accuracy of about 1 cm-1 and the quantum defects for all n were determined to be


Δ(s)=1.35(4), Δ(d)=.00(4), in good agreement with the amounts at lower levels. For n greater than 33 the


laser resolution was insufficient to resolve the splitting between adjacent ns and (n-1)d levels, though


individual pairs could be resolved to n=47. By studying the ionization probability as a function of electric


field for different levels we have been able to observe the Stark shift at the onset of ionization. This


problem has evoked continued interest over the years because it represents the extreme case of distortion


of a free particle by an electric field. Consistent results on the ground state of hydrogen have been obtained


by several authors. Huschfelder an Curtiss have considered the n=5, in detail. The alkali system differs fro


hydrogen in the important respect that the degeneracy of the low angular-momentum states is broken,


regardless of n. This presents a useful experimental advantage, for it allows selection of a single member


of an otherwise n-fold-degenerate manifold of angular momentum states. This can be illustrated in the


data on the ionization threshold for the 31s state that exhibits the abrupt onset of ionization which


characterizes a single energy level. The onset of ionization is broader for the 30d level than for 31s; this


might be due to the Starl splitting in the ionizing field of 30d. The 31s remains a single-shifted level. The


Coulombic potential in an applied field, V=-1/r-Ez (a.u) has a Vmax=-2√E.


The ionization occurs when Vmax=Wn, where Wn is the term energy. If we neglect the stark effect, then




Wn=-[2(n*)2[-1, and the threshold field would be En ｰ=[16(n*)4[-1 We have measured the critical


ionization fields, En, for s levels with n=25-34 and the results of En ｰ=[16(n*)4[-1. En is consistently larger


than En ｰ. A simplified analysis of the critical field data can be made by assuming the wave function





remains Coulombic in its essence at the ionization threshold. Writing the term energy at threshold as




Wn=Wn ｰ+δWn, where Wn ｰ=-[2(n*)2[-1, and δWn is taken as the Stark shift at ionization. With this two





level model we calculate amounts for the Stark shift at ionization which are in general agreement with the


amounts extracted from the data. More precise measurements and more realistic calculations which


consider the contribution to the Stark shift are in progress. The technique described here should be useful


for studying a variety of other problems involving excited atoms. In addition to questions of


polarizabilities, there is interest in the behavior of atoms when the magnetic energy dominates the


Coulomb energy and in photo ionization and other radiation phenomena. The technique of high-level


excitation and ionization provides a selective way to detect excited atoms. We would like to show our high


level of appreciation to Myron Zimmerman for his kind assistance in carrying out this work.


Theodore W. Ducas, Michael G. Littman, Richard R. Freeman and Daniel Kleppner Received 14 April 1975


PNC


The Cesium Oven


The cesium oven used as the source of the atomic beam in these experiments was designed by Carl Wieman


and built by Blaine Horner in the JILA instrument. It replaces the oven that had been used since the first


PNC experiments with cesium were performed by Sarah Gilbert. The measurement of parity nonconservation


PNC in atomic cesium provides the most precise low-energy test of the standard model of


interactions. However, the test would be limited by uncertainty in the ab initio n calculations that are


required to interpret the measurement. This part describes one measurement that suggests that the


accuracy of the theory might be better than her author claim. The dc Stark shift of the 7s 6s transition in




cesium using high-precision laser spectroscopy removes the largest discrepancy → between experiment





and theory. We find that the standard deviation of the differences between experiment and theory is


0.40%. This standard deviation suggests that the quoted uncertainty of the theory can be reduced from 1%


to 0.40%. A measurement of Mhf /T, using similar methods is also presented. The quantity Mhf is the offdiagonal


hyperfine-interaction-induced magnetic dipole amplitude, and T is the tensor transition


polarizability; both for the 7s 6s transition in cesium. This ratio is combined with a 0.25% semi-empirical


determination of Mhf from another group to determine the value of T with a high precision. Previously the


amount of T used in the test of the standard model was calculated using the ab initio theory, thus


increasing the uncertainty due to theory in the final test. By using the new measured amount of T, the


current measurement with improved precision and the previous measure, we have made a 0.61% test of


the standard model. Two experiments are discussed that might be useful in improving the signal-to-noise


ratio on a future PNC measurement: an experiment that phase modulates the dye laser used to drive the


transition to eliminate the spatial intensity variation inside a Fabry-Perot etalon. The oven has two


sections, the main part in the back of the oven where ampules of cesium are placed and heated, and the


nozzle in the front where the atoms receive their initial collimation. To load the oven, its pieces are


completely assembled except for the rear flange. Then, in a glove compartment back-filled with argon gas


so that the cesium does not react with air, two 12g cesium ampules are broken and placed in a small glass


boat. The boat is then placed in the main section of the oven and the rear flange is attached. The oven is


then removed from the glove compartment and attached to the vacuum chamber. When the vacuum


chamber has been evacuated, the oven gate can be opened. The rear section of the oven is heated by two


ceramic heaters fastened around the oven. The entire oven is then wrapped in insulation and temperature


stabilized at around 356 degrees of Fahrenheit. The hot cesium atoms travel from the back of the oven


through a small tube to the nozzle which is kept at 482 degrees of Fahrenheit to dissociate cesium dimers.


A glass plate prevents the direct line to be seen from the rear of the oven so the atoms should re-thermal to


the nozzle temperature. Once re-thermal, the atoms can leave the nozzle through a glass capillary array.


The arrays are made from blocks of many glass tubes 11 μm in diameter, close packed, and sliced into 0.5


mm thick, 2.54 cm square wafers. The array covers an opening in the nozzle which gives the initial


definition to the atomic beam shape. After leaving the oven, the atomic beam go through ~.5 cm high, 2.5


cm long aperture in a large copper plate, which is cooled to liquid nitrogen LN2 temp. and then the beam


go through a vertical collimator with vane separation of 1 mm; after the vane collimator the beam has a


divergence of ~32. It is important to note that the capillary arrays, which are made of leaded glass, often


cut on a bias, That is, the slices are not cut normal to the long direction of the glass tubes. The arrays


varies in the angle at which they are cut from zero to five degrees, despite our specification of zero bias


angle. To ensure a high flux in the atomic beam, we measure the bias angle of every array and reject any




arrays that has a bias angle greater than .5 ｰ, this way we are able to apply 60 percent of the arrays.





The PNC


Applying atomic PNC to test the standard model brings together two disparate field of physics:




– High energy physics


– Atomic physics





This part presents enough theory so that the atomic physics measurements can be understood. In


addition to the general theory, this part covers the effects of external magnetic fields with respect


to the experimental apparatus along with the precise details over the transition rates that the


experiments measure. Much of the content here closely follows the theses of Gilbert, Noecker,


Masterson and Wood.


Cesium Energy Level Structures


Cesium has a single valence electron with a Xenon-like core. It has nuclear spin 7/2, electric spin 1/2 and


total electric angular moment J=L+S. Its total angular momentum is given by F=I+J, so with J=1/2 there


are two hyperfine levels: F=3,4. With J=3/2 there are four hyperfine levels:F=2,3,4,5. Perhaps the most


familiar spectral features of atomic cesium are the so called D1 and D2 lines which are electric dipole


transitions from the 6s1/2 ground to the 6P1/2,6P3/2 states respectively. The work here uses the D2 line


for optical pumping and detection.


Stark-Induced Amplitude An applied external de electric field E polarizes the cesium atom also mixes states


in a similar way the interaction in Eq.2.4. does with HPNC replaces with eE r .|ψ>=|ψ+>+Σ|φi-> |HPNC|


ψ+>/Eψ-Eφ This is how HPNC maximizes the states of opposite parity. Here the parameters |HPNC|ψ+>


are the matrix parameters of gamma5 in their essence. The operator gamma5 does not


appear in any atomic observable. Bouchiats showed that in: |HPNC|nℓ R'n'ℓ(r) ∂Rnℓr)/∂r where n is the


principal quantum number, ℓthe orbital angular momentum quantum number, and Rnℓr) the radial wave


function of the |nℓ state, as far as r would be small in the Rnℓr)~rℓZ(ℓ1/2), HPNC maximizes the states


to a good approximation.


Electric Dipole Amplitudes -Parity Non conserving Amplitude In cesium, the mixing of S and P states given


by |nSFm>=Σ|n'P> |HPNC> EnS-En'P In the presence of an oscillating laser field with electric field




polarization ξ , there is E1 amplitude between the 7,6 states of cesium. The constant → EPNC contains all





the radial information as well as the connection to the standard model including: =Σ|7s>|6s> |HPNC> |


nP> E7s-Enp, E6s-Enp Here |nP> is the effective radial integral. The Stark-induced and PNC electric dipole


amplitudes differ significantly in size when the D1 amplitude has a strength on the first or second order.


Magnetic dipole amplitude Though to first order magnetic dipole M1 amplitudes vanish between states


with different n, relativistic effects and the off-diagonal hyperfine interaction both contribute to a small


amplitude between the 7&6 states. The Hamiltonian for the interaction connecting these states given by


HM1=μac =μ /h(L+2S)Tac =μBσac where μB is the Bohr magneton,σ Pauli spin operator. The amplitude


for the M1 transition is given by M1Fm F'm'=7SF'm'/HM1/6SFm, where the radial integrals have been


incorporated into the constant M1. The radial part can be written as M1=M+-Mhf, where M is from


relativistic effects and Mhf is from the off-diagonal interaction.


Luiz Davidovich


The Quantum PCP Conjecture


The classical PCP theorem is arguably the most important achievement of classical complexity theory in the


past quarter century. In recent years, researchers in quantum computational complexity have tried to


identify approaches and develop tools that address the question: Does a quantum version of the PCP


theorem hold? The story of this study starts with classical complexity and takes unexpected turns


providing fascinating vistas on the foundations of quantum mechanics and multipartite entanglement,


topology and the so-called phenomenon of topological order, quantum error correction, information


theory, and much more; it raises questions that touch upon some of the most fundamental issues at the


heart of our understanding of quantum mechanics. At this point, the jury is still out as to whether or not


such a theorem holds. This survey aims to provide a snapshot of the status in this ongoing story, tailored


to a general theory-of-CS audience. Perhaps the most fundamental result in classical complexity theory is


the Cook-Levin theorem, which states that SAT, the problem of deciding satisfiability of a Boolean formula,


is NP-complete. This result opened the door to the study of the rich theory of NP-completeness of


constraint satisfaction problems (CSPs). At the heart of this framework stands the basic understanding


that computation is local, made of elementary steps which can be verified one at a time. The main object of


this study is thek-local constraint satisfaction problem. A k-CSP is a formula on n Boolean (or higher


dimensional) variables, composed of m constraints, or clauses, each acting on at most k variables, where k


should be thought of as a small constant (say, 2 or 3). By a constraint, we mean some restriction on the


assignments to these k variables which forbids one or more of the 2 to the power of k possible strings. As a


consequence of the Cook-Levin theorem, deciding whether or not a CSP instance has a satisfying


assignment is exactly as hard as deciding whether a given polynomial-time Turing machine has an


accepting input: it is NP-complete. Starting with the development of interactive proofs in the 1980s, a long


line of work in complexity theory has resulted in a considerable strengthening of the Cook-Levin theorem,


leading to the celebrated PCP. In its gap amplification version due to Dinur, the PCP theorem states that it


is NP-hard to distinguish between the cases when an instance of CSP is completely satisfiable, or when no


more than 99% of the constraints can be satisfied. In other words, not only is it NP-hard to determine


exactly the maximum number of satisfiable clauses, but it remains NP-hard to do so up to approximation


that scales as a constant fraction of the total number of clauses. In fact, a major development stemming


from the PCP theorem is research on hardness of approximation, where one attempts to determine for


which approximation factors a given class of k-CSPs remains NP-hard. A surprising outcome of this line of


work has been that for many k-CSPs, the hardness of approximation factor matches that achieved by a


random assignment. For instance, a random assignment to a 3SAT formula already satisfies 7/8 of the


clauses in expectation, and it is NP-hard to do even slightly better, namely to distinguish between 7/8+ε


and 1. The original version of the PCP theorem was stated quite differently; Owing to its origins in the


development of the celebrated IP =PSPACE and MIP=NEXP results from the theory of interactive proofs, it


can be phrased as follows: any language in NP can be verified (up to constant error) by a polynomial time


verifier who only reads a constant (!) number of randomly chosen bits from a polynomial-size proof. Hence


the term probabilistic checkable proofs. Though this formulation may a priori sound quite different from


the gap amplification one, it is quite easy to see they are equivalent : roughly, if any assignment must


violate a constant fraction of the clauses, then sampling a clause at random and checking whether is it


satisfied which requires reading the bits of the clause, would detect a violation with constant probability.


Quantum Hamiltonian complexity Over the past decade, a fascinating analogy has been drawn between the


above major thread in classical computational complexity, namely the study of CSPs, and the seemingly


unrelated field of condensed matter physics. The object of condensed matter physics is the study of


properties of condensed phases of matter, such as solids or liquids, in which typically the systems consist


of many interacting particles governed by the laws of quantum mechanics. A central question of study is


which configurations of the particles minimize the energy, and what this minimal energy is. The energy of


the system is determined by an operator called the Hamiltonian. It consists of a sum of local terms, namely


terms that determine the energy of a few particles at a time, while in practice these terms are often


localized in space, here, unless otherwise explicitly stated, by local we shall mean involving O(1) particles.


The total energy is the sum of contributions coming from each of those local terms. We can think of each


local term as a generalized constraint, and its contribution to the energy as a signature of how violated the


local constraint is. We see that the question of finding the configuration of lowest energy has a very similar


flavor to the central question in CSPs, that is:


what's the assignment that violates the smallest possible number of clauses?


PCP Conjecture cnt'd


The macroscopic properties of materials arise from the physical interactions between their constituent


particles. For example, the use of the Pauli exclusion principle explains how the conductivity properties of


a material follow from the energy band structure of its atoms. Techniques for performing the


extrapolation from microscopic laws to macroscopic predictions form the basis of statistical mechanics.


The implied statistical averaging, however, is insufficient to predict certain properties, such as


superconductivity, for which subtle quantum mechanical effects need to be taken into account. Without the


reduction in complexity granted by the application of the law of large numbers, the study of novel phases


of matter quickly runs into a fundamental computational bottleneck. The complete description of an nparticle


quantum system requires exponentially many parameters:


How can one hope to make meaningful predictions if one cannot even write down a full description of the


state of the system?


Is materials science about to hit a computational barrier?


The Simons semester on Quantum Hamiltonian Complexity brought together theoretical physicists and


computer scientists motivated by this problem. The goal of the semester was to formulate, and begin to


address, the key complexity-theoretic issues that arise from the study of many-body systems in condensedmatter


physics. A central conjecture, the so-called quantum PCP conjecture, crystallizes many of these


issues, and the conjecture was hotly debated throughout the semester. During an open problems session


held as part of one of the week-long workshops, I was prompted to formulate a new variant of the


conjecture whose study led to a fruitful collaboration with Joseph Fitzsimons, another program


participant. Before describing this new variant, I will introduce the central computational problem in


quantum Hamiltonian complexity and formulate the quantum PCP conjecture.


Edited by Payman Sheriff


The Local Hamiltonian


The computational hardness of making predictions about the global properties of quantum many-body


systems is embodied in a single computational problem, the local Hamiltonian. This problem, introduced


by Kitaev as a direct quantum analogue of classical constraint satisfaction problems, asks whether a given


Hamiltonian (i.e. a collection of physical constraints―magnetic field, two-body interactions, etc.) acting on


n particles has a lowest energy state whose energy is below or above a certain threshold. Formally, each


constraint is specified by a a positive semi-definite matrix Hj acting on a constant-size subset of the n




particles. The energy of a quantum state |ψ is its overlap with the total Hamiltonian: Kitaev ⟩ showed that





the local Hamiltonian problem is complete for the complexity class QMA, the quantum analogue of NP:


QMA is the class of decision problems that can be solved by a polynomial-time quantum computer given


access to a quantum proof. Kitaev's seminal result shows that a fundamental problem in physics,


estimating the minimal energy of a local Hamiltonian, is computationally intractable. Assuming, as is


widely believed, that QMA is a strictly larger class than NP, it also implies that the lowest-energy state does


not have an efficient classical description from which its energy can be estimated. In particular, the state


must be highly entangled; in other words it must possess complex quantum correlations spread across all


its particles. Kitaev's purely theoretical result thus has direct consequences for the properties of physical


states: even the simplest such states (the lowest-energy state is the equilibrium state of the system as the


temperature is driven to zero) display the most complex quantum phenomenon, many-body entanglement.


The quantum PCP conjecture


Kitaev's hardness result applies to inverse-polynomial approximations to the minimal energy; How about


weaker approximations? In cases where the energy has an intensive scale with the system size, it is natural


to only require an approximation that is proportional to the number of constraints acting on the system.


Do such approximations remain hard to obtain, or could they be amenable to efficient, possibly quantum,


algorithms? Asking this question amounts to seeking a quantum analogue of the PCP theorem from


classical complexity theory. The PCP theorem, a major breakthrough of the early 90s, asserts that


constraint satisfaction problems such as 3SAT remain hard even under very strong promises on the


satisfiability of the instance: Given a 3SAT formula, it is NP-hard to estimate the maximum number of


clauses that can be simultaneously satisfied up to an accuracy that scales in proportion to the total number


of constraints. Since the local Hamiltonian problem contains classical constraint satisfaction problems as a


special case, the PCP theorem implies that constant-factor approximations to the minimal energy are


NPhard. The quantum PCP conjecture asks whether or not the problem is even harder; Could it be QMAhard?


The status of the conjecture remains completely open. A positive answer would have important


implications for the presence of entanglement in so-called Gibbs states, which are equilibrium states of the


Hamiltonian at low but positive temperature. Indeed, interest in the conjecture partly stems from its


apparent contradiction with the common physical intuition that, as temperature is increased above zero,


disorder in the system tends to destroy the coherence required for maintaining entanglement. If this


intuition were correct, then low-energy states would have classical descriptions that could be used to


contradict the conjecture.


New Variant


Much of the strength of the PCP theorem comes from its versatility, and many equivalent formulations are


known. One such formulation, closely tied to the theorem's origins, uses the language of interactive proof


systems. Here one might think of the verification procedure; e.g. the satisfiability of a 3SAT formula given


as input; as an interactive protocol between a polynomial-time verifier and all-powerful but untrusted


provers. The PCP theorem implies that any language in NP can be verified through a single round of


interaction with two non-communicating provers, to which the verifier sends logarithmic length messages


and receives a constant number of bits as answers. The possibility for such highly efficient proof checking


compared to reading off the linear number of bits describing a satisfying assignment remains a wonder of


modern complexity theory. Interestingly, this formulation of the PCP theorem gives rise to a quantum


analogue whose relation to the quantum PCP conjecture is a priori unclear. The new variant asks the


following: Do all languages in QMA admit an efficient verification procedure of the above form, in which


the verifier and communication may be quantum? Here it is important to allow the provers to be initiated


in an arbitrary entangled state, as this might be necessary to encode the QMA witness whose existence the


provers are supposed to convey to the verifier.


Dorit Aharonov and Itai Arad and Thomas Vidick


Quantum PCP conjectures Cnt'd


By applying unary notation for the clock the locality can be improved to 5, and with more


work Kitaev, Kempe and Regev showed that 2-LH is QMA-complete.


Theorem 1 (Quantum Cook-Levin). Given a set of n qubits and m local quantum constraints, or


Hamiltonians, 0 smaller than Hi smaller than Id, acting on q = O(1) qubits each, it is QMA-hard to


distinguish between (H = sumi Hi):


E0(H) = min [H,w> smaller than c


E0(H)> b,


for c = 2-poly(n) and b = c + 1/ poly(n).


Few comments on the parameters c and b


The best known results for 5-LH have b-c = omega(1/T2), where T is the number of gates in the QMA


verifier circuit. Since the number of Hamiltonians is linear in T, this gives a gap that is quadratic in 1/m.


The classical Cook-Levin theorem states that 3SAT is NP-hard. This implies that 3-LHc,b is NP-hard for c =


0, b = 1. The PCP theorem implies that 3-LHc,b is NPhard for c = 0, b = gamma m for some gamma>0,


leading to a gap that scales linearly with the number of constraints.


The CSP formulation of QPCP


Conjecture 2 (QPCP, CSP variant). There exists gamma > 0 and q such that given an instance of q-LH it is


QMA-hard to distinguish between):


E0(H) smaller than c


E0(H)> b = c + gamma m.


This is the most immediate diversification of the PCP theorem to the quantum setting, the same as what we


saw different statements for the PCP theorem.


Brenden Roberts


Emission in free space


Consider a one electron atom with two electronic levels e and f separated by an energy interval Ee—Ef=hw.


Spontaneous emission appears as a jump of the electron from level e to level f accompanied by the


emission of a photon. This process can be understood as resulting from the coupling of the atomic electron


to the electromagnetic field in its "vacuum" state. A radiation field in space is described in terms of an


infinite set of harmonic oscillators, one for each mode of radiation. The levels of this oscillator correspond


to states with 0,1,2,...,n photons of energy hw. In its ground state each oscillator has a "zero-point" energy


hw/2 associated with its quantum fluctuations. The rms vacuum electric-field amplitude Evac in a mode of


frequency w is the square root of [hw/2epsilon0 V, where epsilon0 is the permittivity of free space,V is the


size of an arbitrary quantization volume and the units are SI. The coupling of the atom to each field mode


is described by the elementary frequency Omega ef= Def Evac/h Here Def is the matrix element of the


electric dipole of the atom between the two levels, and Omega ef which is often referred to as the Rabi


frequency of the vacuum, is the frequency at which the atom and the field would exchange energy if there


were only a single mode of the field. An essential feature of spontaneous emission in free space, however,


is that the atom can radiate in to any mode that satisfies the conservation of energy and momentum. The


time of emission and the particular mode in which the photon is observed are random variables. The


probability of photon emission per unit time, more familiarly called the Einstein-coefficient; is


proportional to the square of the frequency Omega ef, and to the mode density r0(w), the number of modes


available per unit frequency interval. The mode density is given by the expression where it is assumed that


the quantization volume V is large compared to lambda^3, The probability T0, , is given by the Fermi


"golden rule".


Pairing fermions


Since all visible matter is made up of fermions, creating a superfluid most often requires pairing of


fermions. The simplest though not the most pleasant way to imagine pairing fermions is to create a twobody


bound state of the two fermions. Two half-integer spin fermions when paired will produce an integer


spin particle which is a composite boson. The two colors represent fermions in two different spin states;


two states are required if the fermions are to pair via s-wave interactions. In other pairing mechanisms,


such as Cooper pairing, the underlying fermionic nature of the system is much more apparent.


Perfect Fermi


The energy of the two fermions turns out to be less than the expected value of 2E for arbitrary weak


attractive interactions. This result is in surprising contrast to the result of the problem of two fermions in


vacuum; in that case there will not be a bound state until the interaction reaches a certain threshold. The


key difference between the two situations arises from Pauli blocking, which in the Cooper pair case


prevents the two fermions under consideration from occupying momentum states k < k' , where k' is the


Fermi wave vector. Considering only one pair of electrons as free to pair on top of a static Fermi sea is not


a sufficient solution to the pairing problem. Fermions should be allowed to participate in the pairing, and


we expect that pairs should form until an equilibrium point is reached. At this equilibrium point the


remaining ensemble of fermions is disturbed enough from a Fermi sea configuration to no longer lead to a


bound state at the given interaction strength.


The BCS-BEC crossover


It is interesting to consider what happens if diatomic molecules become more and more weakly bound, to


the point where the binding energy of the molecules, Eb, becomes less than the Fermi energy, E. One could


also consider increasing the interaction energy of a Cooper paired state until it is close to E . The essence of


the BCS-BEC crossover is that these two sentences describe the same physical state. As the interaction


between fermions is increased there will be a continual change, or crossover, between a BCS state and a


BEC of diatomic molecules. The point where two fermions in vacuum would have zero binding energy is


considered the cusp of the crossover problem. These pairs have some properties of diatomic molecules and


some properties of Cooper pairs. Many-body effects are required for the pairing, as with the BCS state, but


there is some amount of spatial correlation, as with diatomic molecules. The pair size is on the order of the


spacing between fermions, and the system is strongly interacting.
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Absorption of light: Beer-Lambert Law


Up to this point, we have learned how electromagnetic waves are generated, how molecules can scatter


light (and how we can determine molecular weight from the amount of scattering, using a Zimm plot) and


how molecules interact with circularly polarized light. In this section, we will learn how compounds absorb


ultraviolet (UV) or visible light: P0 is the incident radiant power or intensity, P is the radiant intensity that


remains and b is the path length.


Physical principle


Recall the potential energy function that we had for a diatomic molecule, We can describe how the light is


absorbed by either the transmittance or the absorbance: Transmittance T = I / I0% Transmittance %T =


100 T Absorbance A=log10I0/I , A=log101/T , A=log10100 / %T , A=2-log10%T Both the transmittance and


absorbance are related:


The Beer-Lambert law relates the absorbance to the concentration:


A=εbc with A is absorbance (no units, since A = log10 (P0/ P), ε is the molar absorbtivity or extinction


coefficient with units of L mol-1 cm-1, b is the path length of the sample –i.e. the path length of the cuvette


in which the sample is contained (in cm) and c is the concentration of the compound in solution, expressed


in mol L-1. we can express transmittance in terms of concentration, but the Beer-Lambert law is more


useful because the relationship between absorbance and concentration is linear.


Derivation of the Beer-Lambert law:


In order to derive the law, we need to approximate the absorbing molecules in the cuvette as opaque disks,


of cross-sectional area; σ, I= intensity of light entering the sample, Iz= intensity at point z in the sample


compartment dI = intensity of light absorbed by the slab, I = intensity of the light leaving the sample


N=Molecules/cm3, Total opaque area in the slab = NσdzA, i.e. fraction of opaque areas in the slab times the


total area. This fraction of opaque areas is also a measure of the fraction of light absorbed: dI/lz = - N σdz


We can integrate this equation from z=0 to z=b, to give us ln(I) –ln(I0) = - N σb or ln (I0/I) = N σ b with N


the number of mules per cm3, can be related to concentration by N * cm3/L) /NA= c (M) and 2.303 * log(x)


= ln(x), Therefore, we have log (I0/I) = σNA cb / 2.303*1000 or A = εb c with ε= σNA / 2.303*1000 This


shows how the extinction coefficient is related to the cross-sectional areas of absorption.


Non-linearity of Beer-Lambert’s law


Beer’s law is linear in most cases, except:


•at high concentrations


•if there is scattering of light due to particulates in the sample


•if the sample fluoresces or phosphoresces


•if the radiation is not monochromatic


•if there is stray light Taking a closer look at concentration effects


High concentration results in non-linearity


Because at high concentration, we have strong electrostatic interactions between molecules we might get


changes in refractive index if we have a system in chemical equilibrium, equilibrium might shift at high


concentrations.


Application of absorbance measurements


1 –Estimate the concentration of a protein which has 1 or more Trp residues


2 –HPLC Trace


3 –Changes in configuration


Group.chem.ubc.ca


Photonic Particles


Working with colleagues at the Harvard+MIT center for ultracold Atoms a group led by Harvard Professor


of Physics Mikhail Lukin+ MIT Professor of Physics Bladan Buletic have managed to coat photons into


binding together to form molecules C a state of matter that until recently had been purely theoretical. The work is described in a September paper " The discovery Lukin said runs contrary to decades of accepted wisdom about the nature of light " Photons have long been described as massless particles which don't


interact with each other, shine two laser beams at each other he said and they simply pass through one


another; Photonic particles ; however behave less like traditional lasers and more like something you


might find in science fiction, the light saber; Most of the properties of light we know about originate from


the fact that photons are massless and that they do not interact with each other; Lukin said what we have


done is create a special type of medium in which photons interact with each other so strongly that they


begin to act as though they have mass and they bind together to form particles.


KP effect


Physicists observed a strange disappearing act during collisions between forms of Bose Einstein


condensate. Two clumps of matter pass through each other without sharing space; In some cases the


colliding clumps of matter appear to deepen their distance even as they pass through each other. Clumps of


a few hundred thousand lithium atoms that are cooled to within one-millionth of a degree above absolute


zero a temperature so cold that the atoms march in lockstep and act as a single matter wave. The


researchers expected to observe the property that the pair in collision would pass through one another


without slowing down or changing shape. However they found that in certain collisions they approached


one another maintained a minimum gap between themselves and then appeared to bounce away from the


collision.
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